Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 12(7): e0394323, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38757984

ABSTRACT

Parascedosporium putredinis NO1 is a plant biomass-degrading ascomycete with a propensity to target the most recalcitrant components of lignocellulose. Here we applied proteomics and activity-based protein profiling (ABPP) to investigate the ability of P. putredinis NO1 to tailor its secretome for growth on different lignocellulosic substrates. Proteomic analysis of soluble and insoluble culture fractions following the growth of P. putredinis NO1 on six lignocellulosic substrates highlights the adaptability of the response of the P. putredinis NO1 secretome to different substrates. Differences in protein abundance profiles were maintained and observed across substrates after bioinformatic filtering of the data to remove intracellular protein contamination to identify the components of the secretome more accurately. These differences across substrates extended to carbohydrate-active enzymes (CAZymes) at both class and family levels. Investigation of abundant activities in the secretomes for each substrate revealed similar variation but also a high abundance of "unknown" proteins in all conditions investigated. Fluorescence-based and chemical proteomic ABPP of secreted cellulases, xylanases, and ß-glucosidases applied to secretomes from multiple growth substrates for the first time confirmed highly adaptive time- and substrate-dependent glycoside hydrolase production by this fungus. P. putredinis NO1 is a promising new candidate for the identification of enzymes suited to the degradation of recalcitrant lignocellulosic feedstocks. The investigation of proteomes from the biomass bound and culture supernatant fractions provides a more complete picture of a fungal lignocellulose-degrading response. An in-depth understanding of this varied response will enhance efforts toward the development of tailored enzyme systems for use in biorefining.IMPORTANCEThe ability of the lignocellulose-degrading fungus Parascedosporium putredinis NO1 to tailor its secreted enzymes to different sources of plant biomass was revealed here. Through a combination of proteomic, bioinformatic, and fluorescent labeling techniques, remarkable variation was demonstrated in the secreted enzyme response for this ascomycete when grown on multiple lignocellulosic substrates. The maintenance of this variation over time when exploring hydrolytic polysaccharide-active enzymes through fluorescent labeling, suggests that this variation results from an actively tailored secretome response based on substrate. Understanding the tailored secretomes of wood-degrading fungi, especially from underexplored and poorly represented families, will be important for the development of effective substrate-tailored treatments for the conversion and valorization of lignocellulose.


Subject(s)
Fungal Proteins , Lignin , Proteomics , Lignin/metabolism , Fungal Proteins/metabolism , Secretome/metabolism , Biomass , Cellulases/metabolism , Ascomycota/metabolism , Ascomycota/growth & development , Ascomycota/enzymology
2.
Microbiol Spectr ; 11(6): e0103523, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37811978

ABSTRACT

IMPORTANCE: An annotated reference genome has revealed P. putredinis NO1 as a useful resource for the identification of new lignocellulose-degrading enzymes for biorefining of woody plant biomass. Utilizing a "structure-omics"-based searching strategy, we identified new potentially lignocellulose-active sequences that would have been missed by traditional sequence searching methods. These new identifications, alongside the discovery of novel enzymatic functions from this underexplored lineage with the recent discovery of a new phenol oxidase that cleaves the main structural ß-O-4 linkage in lignin from P. putredinis NO1, highlight the underexplored and poorly represented family Microascaceae as a particularly interesting candidate worthy of further exploration toward the valorization of high value biorenewable products.


Subject(s)
Ascomycota , Lignin , Lignin/metabolism , Ascomycota/genetics , Ascomycota/metabolism , Oxidative Stress
3.
Genes (Basel) ; 13(11)2022 11 17.
Article in English | MEDLINE | ID: mdl-36421811

ABSTRACT

Robertkochia solimangrovi is a proposed marine bacterium isolated from mangrove soil. So far, the study of this bacterium is limited to taxonomy only. In this report, we performed a genomic analysis of R. solimangrovi that revealed its lignocellulose degrading ability. Genome mining of R. solimangrovi revealed a total of 87 lignocellulose degrading enzymes. These enzymes include cellulases (GH3, GH5, GH9 and GH30), xylanases (GH5, GH10, GH43, GH51, GH67, and GH115), mannanases (GH2, GH26, GH27 and GH113) and xyloglucanases (GH2, GH5, GH16, GH29, GH31 and GH95). Most of the lignocellulolytic enzymes encoded in R. solimangrovi were absent in the genome of Robertkochia marina, the closest member from the same genus. Furthermore, current work also demonstrated the ability of R. solimangrovi to produce lignocellulolytic enzymes to deconstruct oil palm empty fruit bunch (EFB), a lignocellulosic waste found abundantly in palm oil industry. The metabolic pathway taken by R. solimangrovi to transport and process the reducing sugars after the action of lignocellulolytic enzymes on EFB was also inferred based on genomic data. Collectively, genomic analysis coupled with experimental studies elucidated R. solimangrovi to serve as a promising candidate in seawater based-biorefinery industry.


Subject(s)
Cellulases , Lignin , Lignin/metabolism , Cellulases/genetics , Palm Oil , Bacteria/metabolism , Genomics
4.
Front Plant Sci ; 13: 926300, 2022.
Article in English | MEDLINE | ID: mdl-35937377

ABSTRACT

Ester-linked hydroxycinnamic acids ferulic acid (FA) and para-coumaric acid (p-CA) play important roles in crosslinking within cell wall arabinoxylans (AX) and between AX and lignin in grass cell walls. The addition of hydroxycinnamates to AX, is mediated by the Mitchell clade of BAHD acyl-coenzyme A-utilizing transferases. Overexpression of OsAT10 (a Mitchell clade BAHD acyl transferase) in rice, has previously been shown to increase p-CA content in AX in leaves and stems, leading to increased cell wall digestibility, potentially associated with a concomitant decrease in FA content. To investigate the physiological role of OsAT10 we established CRISPR/Cas9 rice knock-out mutants devoid of OsAT10. Our analysis of hydroxycinnamic acid content in wild type plants revealed that AX associated p-CA is found almost exclusively in rice husks, with very little found in other tissues. Mutant plants were essentially devoid of ester-linked p-CA associated with AX, indicating that OsAT10 represents the major enzyme responsible for the addition of p-CA to arabinoxylan in rice plants. We found no change in the digestibility of rice husk lacking AX-associated p-CA, suggesting that the changes in digestibility seen in OsAT10 overexpressing plants were solely due to compensatory decreases in AX-associated FA.

5.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Article in English | MEDLINE | ID: mdl-33903229

ABSTRACT

Lignocellulose, the structural component of plant cells, is a major agricultural byproduct and the most abundant terrestrial source of biopolymers on Earth. The complex and insoluble nature of lignocellulose limits its conversion into value-added commodities, and currently, efficient transformation requires expensive pretreatments and high loadings of enzymes. Here, we report on a fungus from the Parascedosporium genus, isolated from a wheat-straw composting community, that secretes a large and diverse array of carbohydrate-active enzymes (CAZymes) when grown on lignocellulosic substrates. We describe an oxidase activity that cleaves the major ß-ether units in lignin, thereby releasing the flavonoid tricin from monocot lignin and enhancing the digestion of lignocellulose by polysaccharidase mixtures. We show that the enzyme, which holds potential for the biorefining industry, is widely distributed among lignocellulose-degrading fungi from the Sordariomycetes phylum.


Subject(s)
Ascomycota/enzymology , Biopolymers/chemistry , Enzymes/chemistry , Lignin/chemistry , Ascomycota/chemistry , Biopolymers/metabolism , Enzymes/genetics , Flavonoids/chemistry , Lignin/metabolism , Oxidation-Reduction , Oxidoreductases/chemistry , Oxidoreductases/genetics , Oxygenases/chemistry , Substrate Specificity/genetics , Triticum/enzymology , Triticum/microbiology
6.
Microbiome ; 9(1): 48, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33597033

ABSTRACT

BACKGROUND: Salt marshes are major natural repositories of sequestered organic carbon with high burial rates of organic matter, produced by highly productive native flora. Accumulated carbon predominantly exists as lignocellulose which is metabolised by communities of functionally diverse microbes. However, the organisms that orchestrate this process and the enzymatic mechanisms employed that regulate the accumulation, composition and permanence of this carbon stock are not yet known. We applied meta-exo-proteome proteomics and 16S rRNA gene profiling to study lignocellulose decomposition in situ within the surface level sediments of a natural established UK salt marsh. RESULTS: Our studies revealed a community dominated by Gammaproteobacteria, Bacteroidetes and Deltaproteobacteria that drive lignocellulose degradation in the salt marsh. We identify 42 families of lignocellulolytic bacteria of which the most active secretors of carbohydrate-active enzymes were observed to be Prolixibacteracea, Flavobacteriaceae, Cellvibrionaceae, Saccharospirillaceae, Alteromonadaceae, Vibrionaceae and Cytophagaceae. These families secreted lignocellulose-active glycoside hydrolase (GH) family enzymes GH3, GH5, GH6, GH9, GH10, GH11, GH13 and GH43 that were associated with degrading Spartina biomass. While fungi were present, we did not detect a lignocellulolytic contribution from fungi which are major contributors to terrestrial lignocellulose deconstruction. Oxidative enzymes such as laccases, peroxidases and lytic polysaccharide monooxygenases that are important for lignocellulose degradation in the terrestrial environment were present but not abundant, while a notable abundance of putative esterases (such as carbohydrate esterase family 1) associated with decoupling lignin from polysaccharides in lignocellulose was observed. CONCLUSIONS: Here, we identify a diverse cohort of previously undefined bacteria that drive lignocellulose degradation in the surface sediments of the salt marsh environment and describe the enzymatic mechanisms they employ to facilitate this process. Our results increase the understanding of the microbial and molecular mechanisms that underpin carbon sequestration from lignocellulose within salt marsh surface sediments in situ and provide insights into the potential enzymatic mechanisms regulating the enrichment of polyphenolics in salt marsh sediments. Video Abstract.


Subject(s)
Geologic Sediments/microbiology , Lignin/metabolism , Microbiota/physiology , Wetlands , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , United Kingdom
7.
Genomics ; 112(1): 952-960, 2020 01.
Article in English | MEDLINE | ID: mdl-31201854

ABSTRACT

The genus Meridianimaribacter is one of the least-studied genera within Cytophaga-Flavobacteria. To date, no genomic analysis of Meridianimaribacter has been reported. In this study, Meridianimaribacter sp. strain CL38, a lignocellulose degrading halophile was isolated from mangrove soil. The genome of strain CL38 was sequenced and analyzed. The assembled genome contains 17 contigs with 3.33 Mbp, a GC content of 33.13% and a total of 2982 genes predicted. Lignocellulose degrading enzymes such as cellulases (GH3, 5, 9, 16, 74 and 144), xylanases (GH43 and CE4) and mannanases (GH5, 26, 27 and 130) are encoded in the genome. Furthermore, strain CL38 demonstrated its ability to decompose empty fruit bunch, a lignocellulosic waste residue arising from palm oil industry. The genome information coupled with experimental studies confirmed the ability of strain CL38 to degrade lignocellulosic biomass. Therefore, Meridianimaribacter sp. strain CL38, with its halotolerance, could be useful for seawater based lignocellulosic biorefining.


Subject(s)
Flavobacteriaceae/genetics , Genome, Bacterial , Lignin/metabolism , Flavobacteriaceae/classification , Flavobacteriaceae/enzymology , Genomics , Metabolic Networks and Pathways/genetics , Phylogeny , Polysaccharides/metabolism
8.
Biotechnol Biofuels ; 11: 166, 2018.
Article in English | MEDLINE | ID: mdl-29946357

ABSTRACT

BACKGROUND: Lignocellulose is one of the most abundant forms of fixed carbon in the biosphere. Current industrial approaches to the degradation of lignocellulose employ enzyme mixtures, usually from a single fungal species, which are only effective in hydrolyzing polysaccharides following biomass pre-treatments. While the enzymatic mechanisms of lignocellulose degradation have been characterized in detail in individual microbial species, the microbial communities that efficiently breakdown plant materials in nature are species rich and secrete a myriad of enzymes to perform "community-level" metabolism of lignocellulose. Single-species approaches are, therefore, likely to miss important aspects of lignocellulose degradation that will be central to optimizing commercial processes. RESULTS: Here, we investigated the microbial degradation of wheat straw in liquid cultures that had been inoculated with wheat straw compost. Samples taken at selected time points were subjected to multi-omics analysis with the aim of identifying new microbial mechanisms for lignocellulose degradation that could be applied in industrial pre-treatment of feedstocks. Phylogenetic composition of the community, based on sequenced bacterial and eukaryotic ribosomal genes, showed a gradual decrease in complexity and diversity over time due to microbial enrichment. Taxonomic affiliation of bacterial species showed dominance of Bacteroidetes and Proteobacteria and high relative abundance of genera Asticcacaulis, Leadbetterella and Truepera. The eukaryotic members of the community were enriched in peritrich ciliates from genus Telotrochidium that thrived in the liquid cultures compared to fungal species that were present in low abundance. A targeted metasecretome approach combined with metatranscriptomics analysis, identified 1127 proteins and showed the presence of numerous carbohydrate-active enzymes extracted from the biomass-bound fractions and from the culture supernatant. This revealed a wide array of hydrolytic cellulases, hemicellulases and carbohydrate-binding modules involved in lignocellulose degradation. The expression of these activities correlated to the changes in the biomass composition observed by FTIR and ssNMR measurements. CONCLUSIONS: A combination of mass spectrometry-based proteomics coupled with metatranscriptomics has enabled the identification of a large number of lignocellulose degrading enzymes that can now be further explored for the development of improved enzyme cocktails for the treatment of plant-based feedstocks. In addition to the expected carbohydrate-active enzymes, our studies reveal a large number of unknown proteins, some of which may play a crucial role in community-based lignocellulose degradation.

9.
Sci Rep ; 7(1): 2356, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28539641

ABSTRACT

Microbial communities metabolize plant biomass using secreted enzymes; however, identifying extracellular proteins tightly bound to insoluble lignocellulose in these microbiomes presents a challenge, as the rigorous extraction required to elute these proteins also lyses the microbes associated with the plant biomass releasing intracellular proteins that contaminate the metasecretome. Here we describe a technique for targeting the extracellular proteome, which was used to compare the metasecretome and meta-surface-proteome of two lignocellulose-degrading communities grown on wheat straw and rice straw. A combination of mass spectrometry-based proteomics coupled with metatranscriptomics enabled the identification of a unique secretome pool from these lignocellulose-degrading communities. This method enabled us to efficiently discriminate the extracellular proteins from the intracellular proteins by improving detection of actively secreted and transmembrane proteins. In addition to the expected carbohydrate active enzymes, our new method reveals a large number of unknown proteins, supporting the notion that there are major gaps in our understanding of how microbial communities degrade lignocellulosic substrates.


Subject(s)
Lignin/metabolism , Microbiota , Proteome/metabolism , Proteomics/methods , Biomass , Mass Spectrometry , Metagenome/genetics , Metagenomics/methods , Oryza/growth & development , Oryza/microbiology , Proteome/genetics , Transcriptome/genetics , Triticum/growth & development , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...