Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 51(19): 7723-7731, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35522255

ABSTRACT

A series of bis(alkyl) complexes {(tBu)C[N(2,6-Me2C6H3)]2}Ln(CH2SiMe3)2(THF)n (Ln = Y, n = 1 (1); Ln = Sc, n = 1 (2)), {2-[Ph2P(O)]C6H4NC(tBu)N(2,6-Me2C6H3)}Sc(CH2SiMe3)2 (3), {2-[Ph2P(NPh)]C6H4NC(tBu)N(2,6-Me2C6H3)}Sc(CH2SiMe3)2 (4) coordinated by bidentate (N,N) and tridentate (N,N,O; N,N,N) amidinate ligands are synthesized using an alkane elimination approach. Yttrium complex 1 demonstrated a half-life of ∼2.5 days at room temperature in benzene-D6 (C6D6) solution, whereas scandium complexes proved to be much more stable (25 d (2), 30 d (3) and 42 d (4)). Complexes 1-4 as a part of ternary catalytic systems 1-4/TB, HNB/AlR3 (AlR3 = AliBu3, AliBu2H; TB = [Ph3C][B(C6F5)4], HNB = [PhNHMe2][B(C6F5)4]) demonstrated high catalytic activity in isoprene polymerization and enable 80%-100% conversion of 1000 equivalents of monomer into polymer at 25 °C within 3-180 min. The isolated polyisoprenes feature predominantly cis-1,4-regularity (69.2%-87.3%) and polydispersities Mw/Mn = 2.26-8.92. Moreover, the binary (2/TB) and ternary (1-4/TB/10 AliBu3) systems initiate 1-heptene polymerization providing 40%-100% conversion of 500 equivalents of monomer in 24 h at 25 °C giving polymer samples with Mn = 1.55-190.2 × 103 and Mw/Mn = 1.55-3.87.

2.
Nanomaterials (Basel) ; 11(11)2021 Nov 07.
Article in English | MEDLINE | ID: mdl-34835757

ABSTRACT

The results of the research of a composite based on multi-walled carbon nanotubes (MWCNTs) decorated with CuO/Cu2O/Cu nanoparticles deposited by the cupric formate pyrolysis are discussed. The study used a complementary set of methods, including scanning and transmission electron microscopy, X-ray diffractometry, Raman, and ultrasoft X-ray spectroscopy. The investigation results show the good adhesion between the copper nanoparticles coating and the MWCNT surface through the oxygen atom bridge formation between the carbon atoms of the MWCNT outer graphene layer and the oxygen atoms of CuO and Cu2O oxides. The formation of the Cu-O-C bond between the coating layer and the outer nanotube surface is clearly confirmed by the results of the O 1s near edge X-ray absorption fine structure (NEXAFS) and X-ray photoelectron spectroscopy (XPS) of the Cu/MWCNTs nanocomposite. The XPS measurements were performed using a laboratory spectrometer with sample charge compensation, and the NEXAFS studies were carried out using the synchrotron radiation of the Russian-German dipole beamline at BESSY-II (Berlin, Germany) and the NanoPES station at the Kurchatov Center for Synchrotron Radiation and Nanotechnology (Moscow, Russia).

3.
Nanomaterials (Basel) ; 10(2)2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32098022

ABSTRACT

The paper is devoted to the structure and properties of the composite material based on multi-walled carbon nanotubes (MWCNTs) covered with pyrolytic iron and chromium. Fe/MWCNTs and Cr/MWCNTs nanocomposites have been prepared by the metal organic chemical vapor deposition (MOCVD) growth technique using iron pentacarbonyl and bis(arene)chromium compounds, respectively. Composites structures and morphologies preliminary study were performed using X-ray diffraction, scanning and transmission electron microscopy and Raman scattering. The atomic and chemical composition of the MWCNTs' surface, Fe-coating and Cr-coating and interface-(MWCNTs surface)/(metal coating) were studied by total electron yield method in the region of near-edge X-ray absorption fine structure (NEXAFS) C1s, Fe2p and Cr2p absorption edges using synchrotron radiation of the Russian-German dipole beamline (RGBL) at BESSY-II and the X-ray photoelectron spectroscopy (XPS) method using the ESCALAB 250 Xi spectrometer and charge compensation system. The absorption cross sections in the NEXAFS C1s edge of the nanocomposites and MWCNTs were measured using the developed approach of suppressing and estimating the contributions of the non-monochromatic background and multiple reflection orders radiation from the diffraction grating. The efficiency of the method was demonstrated by the example of the Cr/MWCNT nanocomposite, since its Cr2p NEXAFS spectra contain additional C1s NEXAFS in the second diffraction order. The study has shown that the MWCNTs' top layers in composite have no significant destruction; the MWCNTs' metal coatings are continuous and consist of Fe3O4 and Cr2O3. It is shown that the interface between the MWCNTs and pyrolytic Fe and Cr coatings has a multilayer structure: a layer in which carbon atoms along with epoxy -C-O-C- bonds form bonds with oxygen and metal atoms from the coating layer is formed on the outer surface of the MWCNT, a monolayer of metal carbide above it and an oxide layer on top. The iron oxide and chromium oxide adhesion is provided by single, double and epoxy chemical binding formation between carbon atoms of the MWCNT top layer and the oxygen atoms of the coating, as well as the formation of bonds with metal atoms.

4.
Nanomaterials (Basel) ; 9(11)2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31717941

ABSTRACT

Aluminum matrix composites reinforced with multiwalled carbon nanotubes (MWCNTs) are promising materials for applications in various high-tech industries. Control over the processes of interfacial interaction in Al/MWCNT composites is important to achieve a high level of mechanical properties. The present study describes the effects of coating MWCNTs with titanium carbide nanoparticles on the formation of mechanical properties and the evolution of the reinforcement structure in bulk aluminum matrix nanocomposites with low concentrations of MWCNTs under conditions of solid-phase consolidation of ball-milled powder mixtures. Using high-energy ball milling and uniaxial hot pressing, two types of bulk nanocomposites based on aluminum alloy AA5049 that were reinforced with microadditions of MWCNTs and MWCNTs coated with TiC nanoparticles were successfully produced. The microstructural and mechanical properties of the Al/MWCNT composites were investigated. The results showed that, on the one hand, the TiC nanoparticles on the surface of the MWCNT hybrid reinforcement reduced the damage of reinforcement under the intense exposure of milling bodies, and on the other hand, they reduced the contact area of the MWCNTs with the matrix material (acting as a barrier interface), which also locally inhibited the reaction between the matrix and the MWCNTs.

SELECTION OF CITATIONS
SEARCH DETAIL
...