Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Pharm Bull (Tokyo) ; 69(11): 1123-1130, 2021.
Article in English | MEDLINE | ID: mdl-34719595

ABSTRACT

A disintegrin and metalloproteinase 17 (ADAM17) is a zinc-dependent enzyme that catalyzes the cleavage of the extracellular domains of various transmembrane proteins. ADAM17 is regarded as a promising drug target for the suppression of various diseases, including cancer metastasis. We synthesized a new ADAM17 inhibitor, SN-4, composed of a zinc-binding dithiol moiety and an appendage that specifically binds to a pocket of ADAM17. We show that SN-4 inhibits the ability of ADAM17 to cleave tumor necrosis factor α (TNF-α) in vitro. This activity was reduced by the addition of zinc, indicating the importance of the zinc chelating dithiol moiety. Inhibition of TNF-α cleavage by SN-4 in cells was also observed, and with an IC50 of 3.22 µM, SN-4 showed slightly higher activity than the well-studied ADAM17 inhibitor marimastat. Furthermore, SN-4 was shown to inhibit cleavage of CD44 by ADAM17, but not by ADAM10, and to suppress cell invasion. Molecular docking showed good fitting of the specificity pocket-binding group and one SH of SN-4 and hinted at possible means of structural optimization. This study provides clues for the development of potent and selective ADAM17 inhibitors.


Subject(s)
ADAM17 Protein/antagonists & inhibitors , Protease Inhibitors/chemical synthesis , Sulfonamides/chemical synthesis , Toluene/analogs & derivatives , ADAM10 Protein/metabolism , Humans , Hyaluronan Receptors/metabolism , Hydroxamic Acids/chemistry , Hydroxamic Acids/pharmacology , Molecular Docking Simulation , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , Protein Binding , Protein Conformation , Structure-Activity Relationship , Sulfonamides/metabolism , Sulfonamides/pharmacology , Toluene/chemistry , Tumor Necrosis Factor-alpha/metabolism , Zinc , Benzenesulfonamides
2.
Bioorg Med Chem ; 23(17): 5476-82, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26260338

ABSTRACT

Previously we have reported a metal chelating histidine-pyridine-histidine system possessing a trityl group on the histidine imidazole, namely HPH-2Trt, which induces apoptosis in human pancreatic adenocarcinoma AsPC-1 cells. Herein the influence of the imidazole substitution of HPH-2Trt was examined. Five related compounds, HPH-1Trt, HPH-2Bzl, HPH-1Bzl, HPH-2Me, and HPH-1Me were newly synthesized and screened for their activity against AsPC-1 and brain tumor cells U87 and U251. HPH-1Trt and HPH-2Trt were highly active among the tested HPH compounds. In vitro DNA cleavage assay showed both HPH-1Trt and HPH-2Trt completely disintegrate pUC19 DNA. The introduction of trityl group decisively potentiated the activity.


Subject(s)
DNA/chemistry , Histidine/chemistry , Imidazoles/chemistry , Pyridines/chemistry , Chelating Agents/chemistry , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...