Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Prod Res ; : 1-7, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38206887

ABSTRACT

N-Lanosyl guanidine (1), a new bromophenol containing a guanidine moiety was isolated from the red alga Vertebrata lanosa (L.) T.A. Christensen, which is frequently used for cosmetic purposes. Structure elucidation was performed by means of mass spectrometry as well as 1D and 2D NMR spectroscopy. Due to its structural features, 1 might share a common biosynthetic route with known bromophenolic ureido derivatives. Regarding potential bioactivities, 1 has shown clear anti-inflammatory properties, reducing cytokine release in lipopolysaccharide-stimulated phorbol 12-myristate 13-acetate-differentiated THP-1 macrophages. No signs of toxicity were observed, in either the cell line nor in the nematode Caenorhabditis elegans. However, 1 was inactive against the gram-negative bacterium Pseudomonas aeruginosa.

2.
Pharmaceuticals (Basel) ; 16(11)2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38004399

ABSTRACT

Glioblastoma is the most common and aggressive form of primary brain cancer and the lack of viable treatment options has created an urgency to develop novel treatments. Personalized or predictive medicine is still in its infancy stage at present. This research aimed to discover biomarkers to inform disease progression and to develop personalized prophylactic and therapeutic strategies by combining state-of-the-art technologies such as single-cell RNA sequencing, systems pharmacology, and a polypharmacological approach. As predicted in the pyroptosis-related gene (PRG) transcription factor (TF) microRNA (miRNA) regulatory network, TP53 was the hub gene in the pyroptosis process in glioblastoma (GBM). A LASSO Cox regression model of pyroptosis-related genes was built to accurately and conveniently predict the one-, two-, and three-year overall survival rates of GBM patients. The top-scoring five natural compounds were parthenolide, rutin, baeomycesic acid, luteolin, and kaempferol, which have NFKB inhibition, antioxidant, lipoxygenase inhibition, glucosidase inhibition, and estrogen receptor agonism properties, respectively. In contrast, the analysis of the cell-type-specific differential expression-related targets of natural compounds showed that the top five subtype cells targeted by natural compounds were endothelial cells, microglia/macrophages, oligodendrocytes, dendritic cells, and neutrophil cells. The current approach-using the pharmacogenomic analysis of combined therapies-serves as a model for novel personalized therapeutic strategies for GBM treatment.

3.
Eur J Pharm Sci ; 188: 106529, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37459901

ABSTRACT

Over the past decades, designing of privileged structures has emerged as a useful approach to the discovery and optimisation of novel biologically active molecules, and many have been successfully exploited across and within different target families. Examples include indole, quinolone, isoquinoline, benzofuran and chromone, etc. In the current study, we focus on synthesising a novel hybrid scaffold constituting naturally occurring benzophenone (14) and indanone (22) ring systems, leading to a general structure of 2-(diphenylmethylene)-2,3-dihydro-1H-inden-1-one (23). It was hypothesised this new hybrid system would provide enhanced anti-cancer activity owing to the presence of the common features associated with the tubulin binding small molecule indanocine (10) and the estrogen receptor (ER) antagonist tamoxifen (24). Key hybrid molecules were successfully synthesised and characterised, and the in vitro cytotoxicity assays were performed against cancer cell lines: MCF7 (breast) and SKBR3 (breast), DU145 (prostate) and A549 (lung). The methyl-, chloro- and methoxy-, para-substituted benzophenone hybrids displayed the greatest degree of cytotoxicity and the E-configuration derivatives 45, 47 and 49 being significantly most potent. We further verified that the second benzyl moiety of this novel hybrid scaffold is fundamental to enhance the cytotoxicity, especially in the SKBR3 (HER2+) by the E-methyl lead molecule 47, MCF7 (ER+) by 45 and 49, and A549 (NSCLC) cell lines by 49. These hybrid molecules also showed a significant accumulation of SKBR3 cells at S-phase of the cell cycle after 72 hrs, which demonstrates besides of being cytotoxic in vitro against SKBR3 cells, 47 disturbs the replication and development of this type of cancer causing a dose-dependent cell cycle arrest at S-phase. Our results suggest that DNA damage might be involved in the induction of SKBR3 cell death caused by the hybrid molecules, and therefore, this novel system may be an effective suppressor of HER2+/Neu-driven cancer growth and progression. The present study points to potential structural optimisation of the series and encourages further focussed investigation of analogues of this scaffold series toward their applications in cancer chemoprevention or chemotherapy.

4.
Int J Mol Sci ; 23(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36076967

ABSTRACT

Targeted therapies are the most attractive options in the treatment of different tumours, including kidney cancers. Such therapies have entered a golden era due to advancements in research, breakthroughs in scientific knowledge, and a better understanding of cancer therapy mechanisms, which significantly improve the survival rates and life expectancy of patients. The use of tumour necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) as an anticancer therapy has attracted the attention of the scientific community and created great excitement due to its selectivity in targeting cancerous cells with no toxic impacts on normal tissues. However, clinical studies disappointingly showed the emergence of resistance against TRAIL. This study aimed to employ curcumin to sensitise TRAIL-resistant kidney cancerous ACHN cells, as well as to gain insight into the molecular mechanisms of TRAIL sensitization. Curcumin deregulated the expression of apoptosis-regulating micro Ribonucleic Acid (miRNAs), most notably, let-7C. Transfecting ACHN cells with a let-7C antagomir significantly increased the expression of several cell cycle protein, namely beta (ß)-catenin, cyclin dependent kinase (CDK)1/2/4/6 and cyclin B/D. Further, it overexpressed the expression of the two key glycolysis regulating proteins including hypoxia-inducible factor 1-alpha (HIF-1α) and pyruvate dehydrogenase kinase 1 (PDK1). Curcumin also suppressed the expression of the overexpressed proteins when added to the antagomir transfected cells. Overall, curcumin targeted ACHN cell cycle and cellular metabolism by promoting the differential expression of let-7C. To the best of our knowledge, this is the first study to mechanistically report the cancer chemosensitisation potential of curcumin in kidney cancer cells via induction of let-7C.


Subject(s)
Curcumin , Antagomirs , Apoptosis , Cell Cycle Proteins , Cell Line, Tumor , Curcumin/pharmacology , Humans , Kidney , TNF-Related Apoptosis-Inducing Ligand/pharmacology
5.
Appl Microbiol Biotechnol ; 105(8): 3115-3129, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33796891

ABSTRACT

Four independent mAb-producing CHO cell lines were grown in media supplemented with one of seven protein hydrolysates of animal and plant origin. This generated a 7x4 matrix of replicate cultures which was analysed for viable cell density and mAb productivity. In all cultures, a consistent growth rate was shown in batch culture up to 4 to 5 days. Differences between cultures appeared in the decline phase which was followed up to 7 days beyond the start of the cultures. There was a marginal but significant overall increase (x1.1) in the integral viable cell density (IVCD) in the presence of hydrolysate but a more substantial increase in the cell-specific mAb (qMab) productivity (x1.5). There were individual differences between hydrolysates in terms of enhancement of mAb productivity, the highest being a 166% increase of mAb titre (to 117 mg/L) in batch cultures of CHO-EG2 supplemented with UPcotton hydrolysate. The effect of one of the most active hydrolysates (HP7504) on antibody glycosylation was investigated. This showed no change in the predominant seven glycans produced but a significant increase in the galactosylation and sialylation of some but not all the antibodies. Overall, the animal hydrolysate, Primatone and two cotton-derived hydrolysates provided the most substantial benefit for enhanced productivity. The cotton-based hydrolysates can be viewed as valuable supplements for animal-derived component-free (ADCF) media and as a source for the investigation of chemically defined bioactive components. KEY POINTS: • Protein hydrolysates enhanced both IVCD & qMab; the effect on qMab being consistently greater. • Cotton-based hydrolysates showed high bioactivity and potential for use in serum-free media. • Enhanced galactosylation and sialylation was shown for some of the Mabs tested.


Subject(s)
Antibody Formation , Protein Hydrolysates , Animals , CHO Cells , Cell Culture Techniques , Cricetinae , Cricetulus , Culture Media
6.
Biology (Basel) ; 9(5)2020 May 01.
Article in English | MEDLINE | ID: mdl-32370057

ABSTRACT

Tumour necrosis factor-related apoptosis-inducing ligand (TRAIL), is a selective anticancer cytokine capable of exerting a targeted therapy approach. Disappointingly, recent research has highlighted the development of TRAIL resistance in cancer cells, thus minimising its usefulness in clinical settings. However, several recent studies have demonstrated that cancer cells can be sensitised to TRAIL through the employment of a combinatorial approach, utilizing TRAIL in conjunction with other natural or synthetic anticancer agents. In the present study, the chemo-sensitising effect of curcumin on TRAIL-induced apoptosis in renal carcinoma cells (RCC) was investigated. The results indicate that exposure of kidney cancer ACHN cells to curcumin sensitised the cells to TRAIL, with the combination treatment of TRAIL and curcumin synergistically targeting the cancer cells without affecting the normal renal proximal tubular epithelial cells (RPTEC/TERT1) cells. Furthermore, this combination treatment was shown to induce caspase-dependent apoptosis, inhibition of the proteasome, induction of ROS, upregulation of death receptor 4 (DR4), alterations in mitogen-activated protein kinase (MAPK) signalling and induction of endoplasmic reticulum stress. An in vivo zebrafish embryo study demonstrated the effectiveness of the combinatorial regime to inhibit tumour formation without affecting zebrafish embryo viability or development. Overall, the results arising from this study demonstrate that curcumin has the ability to sensitise TRAIL-resistant ACHN cells to TRAIL-induced apoptosis.

7.
Biotechnol Adv ; 43: 107552, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32416132

ABSTRACT

The manufacturing of recombinant protein is traditionally undertaken in mammalian cell culture. Today, speed, cost and safety are the primary considerations for process improvements in both upstream and downstream manufacturing. Leaders in the biopharmaceutical industry are striving for continuous improvements to increase throughput, lower costs and produce safer more efficacious drugs. This can be achieved through advances in cell line engineering, process development of cell culture, development of chemically defined media and increased emphasis on product characterization. In the first part, this review provides a historical perspective on approved biotherapeutics by regulatory bodies which pave the way for next-generation products (including gene therapy). In the second part, it focuses on the application of in vitro and in vivo cell line engineering approaches, modern process development improvements including continuous manufacturing, recent developments in media formulation, and improvements in critical quality attribute determinations for products produced predominantly in mammalian cells.


Subject(s)
Cell Culture Techniques , Animals , CHO Cells , Cricetinae , Cricetulus , Culture Media , Recombinant Proteins/genetics
8.
Oncol Lett ; 17(3): 3041-3047, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30867732

ABSTRACT

Primary cilia are microtubule-based organelles that are expressed on almost all mammalian cells. It has become apparent that these structures are important signaling hubs that serve crucial roles in Wnt, hedgehog, extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and Notch signaling pathways. A number of diseases have been found to involve dysfunctional primary cilia; collectively these diseases are called ciliopathies. In recent years, there has been more focus on the association between primary cilia and cancer, including renal, pancreatic and breast cancer. Numerous studies have demonstrated that various types of cancer cells fail to express cilia. Notably, it has also been indicated that a number of renal carcinogens induce a significant loss of cilia in renal epithelial cells. The present review focuses on the existing literature regarding primary cilia and their involvement with cancer signaling pathways, providing a brief overview of the structural features and functions of primary cilia, then discussing the evidence associating primary cilia with cancer, and presenting the available information on the ERK/MAPK, hedgehog and Wnt signaling pathways, and their involvement in primary cilia in association with cancer.

9.
Curr Pharm Des ; 24(5): 595-614, 2018.
Article in English | MEDLINE | ID: mdl-29278208

ABSTRACT

BACKGROUND: Potassium bromate (KBrO3), a food additive, has been used in many bakery products as an oxidizing agent. It has been shown to induce renal cancer in many in-vitro and in-vivo experimental models. OBJECTIVES: This study evaluated the carcinogenic potential of potassium bromate (KBrO3) and the chemopreventive mechanisms of the anti-oxidant and anti-inflammatory phytochemical, curcumin against KBrO3-induced carcinogenicity. METHOD: Lactate dehydrogenase (LDH) cytotoxicity assay and morphological characteristics were used to assess curcumin's cytoprotective potential against KBrO3 toxicity. To assess the chemopreventive potential of curcumin against KBrO3-induced oxidative insult, intracellular H2O2 and the nuclear concentration of the DNA adduct 8- OHdG were measured. PCR array, qRT-PCR, and western blot analysis were used to identify dysregulated genes by KBrO3 exposure. Furthermore, immunofluorescence was used to evaluate the ciliary loss and the disturbance of cellular tight junction induced by KBrO3. RESULTS: Oxidative stress assays showed that KBrO3 increased the levels of intracellular H2O2 and the DNA adduct 8-OHdG. Combination of curcumin with KBrO3 efficiently reduced the level of H2O2 and 8-OHdG while upregulating the expression of catalase. PCR array, qRT-PCR, and western blot analysis revealed that KBrO3 dysregulated multiple genes involved in inflammation, proliferation, and apoptosis, namely CTGF, IL-1, and TRAF3. Moreover, qRT-PCR and immunofluorescence studies showed that KBrO3 negatively affected the tight junctional protein (ZO-1) and induced a degeneration of primary ciliary proteins. The negative impact of KBrO3 on cilia was markedly repressed by curcumin. CONCLUSION: Curcumin could potentially be used as a protective agent against carcinogenicity of KBrO3.


Subject(s)
Bromates/antagonists & inhibitors , Carcinogens/antagonists & inhibitors , Curcumin/pharmacology , Food Additives/adverse effects , Protective Agents/pharmacology , Bromates/pharmacology , Carcinogens/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Curcumin/analysis , Dose-Response Relationship, Drug , Epithelial Cells/drug effects , Humans , Protective Agents/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...