Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioanalysis ; 15(9): 493-501, 2023 May.
Article in English | MEDLINE | ID: mdl-37141441

ABSTRACT

Aims: Process analytical technology (PAT) is increasingly being adopted within the pharmaceutical industry to build quality into a process. Development of PAT that provides real-time in situ analysis of critical quality attributes are highly desirable for rapid, improved process development. Conjugation of CRM-197 with pneumococcal polysaccharides to produce a desired pneumococcal conjugate vaccine is a significantly intricate process that can tremendously benefit from real-time process monitoring. Methods: In this work, a fluorescence-based PAT methodology is described to elucidate CRM-197-polysacharide conjugation kinetics in real time. Results & conclusion: In this work, a fluorescence-based PAT methodology is described to elucidate CRM-197-polysacharide conjugation kinetics in real time.


Subject(s)
Antibodies, Bacterial , Polysaccharides , Spectrometry, Fluorescence , Bacterial Proteins
2.
Appl Spectrosc ; 60(11): 1241-6, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17132440

ABSTRACT

The sensitivity of fiber-optic surface plasmon resonance (SPR) sensors was improved by a factor of at least thirteen for aqueous solutions by modifying the tip geometry to allow interrogation of the surface plasmon (SP) band in the near-infrared (NIR) region. This was achieved by tuning the angle at the distal end of the SPR sensor to a dual taper of 71 degrees and 19 degrees . Using a low numerical aperture (NA) fiber-optic sensor, NA = 0.12, is necessary to obtain a functional SPR sensor working in the NIR region. Theoretical simulations using the Maxwell equations demonstrated that even higher enhancement is theoretically possible while maintaining a narrow spectral feature upon the excitation of the SP bands on gold surfaces. The manufacture of the SPR sensors yields good agreement between theoretical simulations and experimental observations. To investigate the properties of these fiber-optic SPR-NIR sensors, sucrose solutions ranging from 0 to 15 x 10(-3) in mole fraction were utilized. The increased sensitivity of the fiber-optic SPR sensors, when used to monitor biomarkers, would yield lower detection limits. The smaller sensing area, compared to planar or other fiber-optic SPR sensors, combined with an improvement of the sensitivity, would yield a dramatic reduction of the absolute amount detected by biosensors.


Subject(s)
Fiber Optic Technology , Spectroscopy, Near-Infrared/instrumentation , Spectroscopy, Near-Infrared/methods , Surface Plasmon Resonance/instrumentation , Surface Plasmon Resonance/methods , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Models, Theoretical , Optical Fibers , Solutions/chemistry , Sucrose/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...