Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 128(4): 716-726, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38236195

ABSTRACT

Understanding disordered structure is difficult due to insufficient information in experimental data. Here, we overcome this issue by using a combination of diffraction and simulation to investigate oxygen packing and network topology in glassy (g-) and liquid (l-) MgO-SiO2 based on a comparison with the crystalline topology. We find that packing of oxygen atoms in Mg2SiO4 is larger than that in MgSiO3, and that of the glasses is larger than that of the liquids. Moreover, topological analysis suggests that topological similarity between crystalline (c)- and g-(l-) Mg2SiO4 is the signature of low glass-forming ability (GFA), and high GFA g-(l-) MgSiO3 shows a unique glass topology, which is different from c-MgSiO3. We also find that the lowest unoccupied molecular orbital (LUMO) is a free electron-like state at a void site of magnesium atom arising from decreased oxygen coordination, which is far away from crystalline oxides in which LUMO is occupied by oxygen's 3s orbital state in g- and l-MgO-SiO2, suggesting that electronic structure does not play an important role to determine GFA. We finally concluded the GFA of MgO-SiO2 binary is dominated by the atomic structure in terms of network topology.

2.
J Chem Phys ; 159(8)2023 Aug 28.
Article in English | MEDLINE | ID: mdl-37606336

ABSTRACT

High-accuracy prediction of the physical properties of amorphous materials is challenging in condensed-matter physics. A promising method to achieve this is machine-learning potentials, which is an alternative to computationally demanding ab initio calculations. When applying machine-learning potentials, the construction of descriptors to represent atomic configurations is crucial. These descriptors should be invariant to symmetry operations. Handcrafted representations using a smooth overlap of atomic positions and graph neural networks (GNN) are examples of methods used for constructing symmetry-invariant descriptors. In this study, we propose a novel descriptor based on a persistence diagram (PD), a two-dimensional representation of persistent homology (PH). First, we demonstrated that the normalized two-dimensional histogram obtained from PD could predict the average energy per atom of amorphous carbon at various densities, even when using a simple model. Second, an analysis of the dimensional reduction results of the descriptor spaces revealed that PH can be used to construct descriptors with characteristics similar to those of a latent space in a GNN. These results indicate that PH is a promising method for constructing descriptors suitable for machine-learning potentials without hyperparameter tuning and deep-learning techniques.

3.
Front Neural Circuits ; 16: 836121, 2022.
Article in English | MEDLINE | ID: mdl-35814485

ABSTRACT

Stride intervals in human walking fluctuate from one stride to the next, exhibiting statistical persistence. This statistical property is changed by aging, neural disorders, and experimental interventions. It has been hypothesized that the central nervous system is responsible for the statistical persistence. Human walking is a complex phenomenon generated through the dynamic interactions between the central nervous system and the biomechanical system. It has also been hypothesized that the statistical persistence emerges through the dynamic interactions during walking. In particular, a previous study integrated a biomechanical model composed of seven rigid links with a central pattern generator (CPG) model, which incorporated a phase resetting mechanism as sensory feedback as well as feedforward, trajectory tracking, and intermittent feedback controllers, and suggested that phase resetting contributes to the statistical persistence in stride intervals. However, the essential mechanisms remain largely unclear due to the complexity of the neuromechanical model. In this study, we reproduced the statistical persistence in stride intervals using a simplified neuromechanical model composed of a simple compass-type biomechanical model and a simple CPG model that incorporates only phase resetting and a feedforward controller. A lack of phase resetting induced a loss of statistical persistence, as observed for aging, neural disorders, and experimental interventions. These mechanisms were clarified based on the phase response characteristics of our model. These findings provide useful insight into the mechanisms responsible for the statistical persistence of stride intervals in human walking.


Subject(s)
Gait , Walking , Gait/physiology , Humans , Walking/physiology
4.
J Chem Phys ; 156(24): 244502, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35778103

ABSTRACT

Quantifying the correlation between the complex structures of amorphous materials and their physical properties has been a longstanding problem in materials science. In amorphous Si, a representative covalent amorphous solid, the presence of a medium-range order (MRO) has been intensively discussed. However, the specific atomic arrangement corresponding to the MRO and its relationship with physical properties, such as thermal conductivity, remains elusive. We solved this problem by combining topological data analysis, machine learning, and molecular dynamics simulations. Using persistent homology, we constructed a topological descriptor that can predict thermal conductivity. Moreover, from the inverse analysis of the descriptor, we determined the typical ring features correlated with both the thermal conductivity and MRO. The results could provide an avenue for controlling material characteristics through the topology of the nanostructures.

5.
Sci Rep ; 11(1): 17948, 2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34504173

ABSTRACT

Topological data analysis is an emerging concept of data analysis for characterizing shapes. A state-of-the-art tool in topological data analysis is persistent homology, which is expected to summarize quantified topological and geometric features. Although persistent homology is useful for revealing the topological and geometric information, it is difficult to interpret the parameters of persistent homology themselves and difficult to directly relate the parameters to physical properties. In this study, we focus on connectivity and apertures of flow channels detected from persistent homology analysis. We propose a method to estimate permeability in fracture networks from parameters of persistent homology. Synthetic 3D fracture network patterns and their direct flow simulations are used for the validation. The results suggest that the persistent homology can estimate fluid flow in fracture network based on the image data. This method can easily derive the flow phenomena based on the information of the structure.

6.
Bioinspir Biomim ; 15(5): 055002, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32396880

ABSTRACT

Passive dynamic walking is a model that walks down a shallow slope without any control or input. This model has been widely used to investigate how humans walk with low energy consumption and provides design principles for energy-efficient biped robots. However, the basin of attraction is very small and thin and has a fractal-like complicated shape, which makes producing stable walking difficult. In our previous study, we used the simplest walking model and investigated the fractal-like basin of attraction based on dynamical systems theory by focusing on the hybrid dynamics of the model composed of the continuous dynamics with saddle hyperbolicity and the discontinuous dynamics caused by the impact upon foot contact. We clarified that the fractal-like basin of attraction is generated through iterative stretching and bending deformations of the domain of the Poincaré map by sequential inverse images. However, whether the fractal-like basin of attraction is actually fractal, i.e., whether infinitely many self-similar patterns are embedded in the basin of attraction, is dependent on the slope angle, and the mechanism remains unclear. In the present study, we improved our previous analysis in order to clarify this mechanism. In particular, we newly focused on the range of the Poincaré map and specified the regions that are stretched and bent by the sequential inverse images of the Poincaré map. Through the analysis of the specified regions, we clarified the conditions and mechanism required for the basin of attraction to be fractal.


Subject(s)
Fractals , Walking/psychology , Biomechanical Phenomena , Energy Metabolism/physiology , Foot/physiology , Gait , Hip Joint/physiology , Humans , Leg , Models, Biological
7.
Biophys J ; 118(12): 2926-2937, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32428439

ABSTRACT

Understanding the protein-folding process is an outstanding issue in biophysics; recent developments in molecular dynamics simulation have provided insights into this phenomenon. However, the large freedom of atomic motion hinders the understanding of this process. In this study, we applied persistent homology, an emerging method to analyze topological features in a data set, to reveal protein-folding dynamics. We developed a new, to our knowledge, method to characterize the protein structure based on persistent homology and applied this method to molecular dynamics simulations of chignolin. Using principle component analysis or nonnegative matrix factorization, our analysis method revealed two stable states and one saddle state, corresponding to the native, misfolded, and transition states, respectively. We also identified an unfolded state with slow dynamics in the reduced space. Our method serves as a promising tool to understand the protein-folding process.


Subject(s)
Molecular Dynamics Simulation , Protein Folding , Algorithms , Principal Component Analysis , Proteins
8.
Sci Rep ; 9(1): 8764, 2019 06 19.
Article in English | MEDLINE | ID: mdl-31217445

ABSTRACT

The purpose of this study is to evaluate the accuracy for classification of hepatic tumors by characterization of T1-weighted magnetic resonance (MR) images using two radiomics approaches with machine learning models: texture analysis and topological data analysis using persistent homology. This study assessed non-contrast-enhanced fat-suppressed three-dimensional (3D) T1-weighted images of 150 hepatic tumors. The lesions included 50 hepatocellular carcinomas (HCCs), 50 metastatic tumors (MTs), and 50 hepatic hemangiomas (HHs) found respectively in 37, 23, and 33 patients. For classification, texture features were calculated, and also persistence images of three types (degree 0, degree 1 and degree 2) were obtained for each lesion from the 3D MR imaging data. We used three classification models. In the classification of HCC and MT (resp. HCC and HH, HH and MT), we obtained accuracy of 92% (resp. 90%, 73%) by texture analysis, and the highest accuracy of 85% (resp. 84%, 74%) when degree 1 (resp. degree 1, degree 2) persistence images were used. Our methods using texture analysis or topological data analysis allow for classification of the three hepatic tumors with considerable accuracy, and thus might be useful when applied for computer-aided diagnosis with MR images.


Subject(s)
Carcinoma, Hepatocellular , Contrast Media/administration & dosage , Gadolinium DTPA/administration & dosage , Liver Neoplasms , Magnetic Resonance Imaging , Adult , Aged , Carcinoma, Hepatocellular/classification , Carcinoma, Hepatocellular/diagnostic imaging , Carcinoma, Hepatocellular/pathology , Female , Hemangioma/classification , Hemangioma/diagnostic imaging , Hemangioma/pathology , Humans , Liver Neoplasms/classification , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/pathology , Male , Middle Aged , Neoplasm Metastasis
9.
Sci Rep ; 8(1): 3553, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-29476108

ABSTRACT

Macroscopic phenomena, such as fracture, corrosion, and degradation of materials, are associated with various reactions which progress heterogeneously. Thus, material properties are generally determined not by their averaged characteristics but by specific features in heterogeneity (or 'trigger sites') of phases, chemical states, etc., where the key reactions that dictate macroscopic properties initiate and propagate. Therefore, the identification of trigger sites is crucial for controlling macroscopic properties. However, this is a challenging task. Previous studies have attempted to identify trigger sites based on the knowledge of materials science derived from experimental data ('empirical approach'). However, this approach becomes impractical when little is known about the reaction or when large multi-dimensional datasets, such as those with multiscale heterogeneities in time and/or space, are considered. Here, we introduce a new persistent homology approach for identifying trigger sites and apply it to the heterogeneous reduction of iron ore sinters. Four types of trigger sites, 'hourglass'-shaped calcium ferrites and 'island'- shaped iron oxides, were determined to initiate crack formation using only mapping data depicting the heterogeneities of phases and cracks without prior mechanistic information. The identification of these trigger sites can provide a design rule for reducing mechanical degradation during reduction.

10.
Phys Rev E ; 95(1-1): 012504, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28208329

ABSTRACT

We apply a persistent homology analysis to investigate the behavior of nanovoids during the crazing process of glassy polymers. We carry out a coarse-grained molecular dynamics simulation of the uniaxial deformation of an amorphous polymer and analyze the results with persistent homology. Persistent homology reveals the void coalescence during craze formation, and the results suggest that the yielding process is regarded as the percolation of nanovoids created by deformation.

11.
Proc Math Phys Eng Sci ; 472(2190): 20160028, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27436971

ABSTRACT

Passive dynamic walking is a useful model for investigating the mechanical functions of the body that produce energy-efficient walking. The basin of attraction is very small and thin, and it has a fractal-like shape; this explains the difficulty in producing stable passive dynamic walking. The underlying mechanism that produces these geometric characteristics was not known. In this paper, we consider this from the viewpoint of dynamical systems theory, and we use the simplest walking model to clarify the mechanism that forms the basin of attraction for passive dynamic walking. We show that the intrinsic saddle-type hyperbolicity of the upright equilibrium point in the governing dynamics plays an important role in the geometrical characteristics of the basin of attraction; this contributes to our understanding of the stability mechanism of bipedal walking.

12.
Chaos ; 22(4): 047508, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23278094

ABSTRACT

We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...