Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(16): 6115-6121, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38665511

ABSTRACT

A π-Lewis acidic metal-catalysed cyclisation/photochemical radical addition sequence was developed, which utilises in situ generated 2-benzopyrylium cation intermediates as photoredox catalysts and electrophilic substrates to form 1H-isochromene derivatives in good yields in most cases. The key 2-benzopyrylium intermediates were generated through the activation of the alkyne moiety of ortho-carbonyl alkynylbenzene derivatives by such π-Lewis acidic metal catalysts as AgNTf2 and Cu(NTf2)2, and the subsequent intramolecular cyclisation and proto-demetalation using trifluoroacetic acid. Further photo-excitation of the 2-benzopyrylium intermediates facilitated single-electron transfer from a benzyltrimethylsilane derivative as a donor molecule to promote the radical addition of arylmethyl radicals to the 2-benzopyrylium intermediates.

2.
Chem Sci ; 12(30): 10306-10312, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34447532

ABSTRACT

The dynamic parallel kinetic resolution (DPKR) of an α-ferrocenyl cation intermediate under the influence of a chiral conjugate base of a chiral phosphoric acid catalyst has been demonstrated in an SN1 type substitution reaction of a racemic ferrocenyl derivative with a nitrogen nucleophile. The present method provides efficient access to a ferrocenylethylamine derivative in a highly enantioselective manner, which is potentially useful as a key precursor of chiral ligands for metal catalysis. The mechanism of the present intriguing resolution system was elucidated by control experiments using the enantio-pure precursor of relevant α-ferrocenyl cation intermediates and the hydroamination of vinylferrocene. Further theoretical studies enabled the elucidation of the origin of the stereochemical outcome as well as the efficient DPKR. The present DPKR, which opens a new frontier for kinetic resolution, involves the racemization process through the formation of vinylferrocene and the chemo-divergent parallel kinetic resolution of the enantiomeric α-ferrocenyl cations generated by the protonation/deprotonation sequence of vinylferrocene.

SELECTION OF CITATIONS
SEARCH DETAIL
...