Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; : 1-16, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38118139

ABSTRACT

Bacterial community of a diesel-spiked agricultural soil was monitored over a 42-day period using the metagenomic approach in order to gain insight into key phylotypes impacted by diesel contamination and be able to predict end point of bioattenuation. Soil physico-chemical parameters showed significant differences (P < 0.05) between the Polluted Soil (PS) and the Unpolluted control (US)across time points. After 21 days, the diesel content decreased by 27.39%, and at the end of 42 days, by 57.11%. Aromatics such as benzene, anthanthrene, propylbenzene, phenanthrenequinone, anthraquinone, and phenanthridine were degraded to non-detected levels within 42 days, while some medium range alkanes and polyaromatics such as acenaphthylene, naphthalene, and anthracene showed significant levels of degradation. After 21 days (LASTD21), there was a massive enrichment of the phylum Proteobacteria (72.94%), a slight decrease in the abundance of phylum Actinobacteriota (12.74%), and > 500% decrease in the abundance of the phylum Acidobacteriodota (5.26%). Day 42 (LASTD42) saw establishment of the dominance of the Proteobacteria (34.95%), Actinobacteriota, (21.71%), and Firmicutes (32.14%), and decimation of phyla such as Gemmatimonadota, Planctomycetota, and Verrucromicrobiota which play important roles in the cycling of elements and soil health. Principal component analysis showed that in PS moisture contents, phosphorus, nitrogen, organic carbon, had greater impacts on the community structure in LASTD21, while acidity, potassium, sodium, calcium and magnesium impacted the control sample. Recovery time of the soil based on the residual hydrocarbons at Day 42 was estimated to be 229.112 d. Thus, additional biostimulation may be required to achieve cleanup within one growing season.

2.
Folia Microbiol (Praha) ; 68(2): 299-314, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36329216

ABSTRACT

Environmental microorganisms usually exhibit a high level of genomic plasticity and metabolic versatility that allow them to be well-adapted to diverse environmental challenges. This study used shotgun metagenomics to decipher the functional and metabolic attributes of an uncultured Paracoccus recovered from a polluted soil metagenome and determine whether the detected attributes are influenced by the nature of the polluted soil. Functional and metabolic attributes of the uncultured Paracoccus were elucidated via functional annotation of the open reading frames (ORFs) of its contig. Functional tools deployed for the analysis include KEGG, KEGG KofamKOALA, Clusters of Orthologous Groups of proteins (COG), Comprehensive Antibiotic Resistance Database (CARD), and the Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT V6) for antibiotic resistance genes, TnCentral for transposable element, Transporter Classification Database (TCDB) for transporter genes, and FunRich for gene enrichment analysis. Analyses revealed the preponderance of ABC transporter genes responsible for the transport of oligosaccharides (malK, msmX, msmK, lacK, smoK, aglK, togA, thuK, treV, msiK), monosaccharides (glcV, malK, rbsC, rbsA, araG, ytfR, mglA), amino acids (thiQ, ynjD, thiZ, glnQ, gluA, gltL, peb1C, artP, aotP, bgtA, artQ, artR), and several others. Also detected are transporter genes for inorganic/organic nutrients like phosphate/phosphonate, nitrate/nitrite/cyanate, sulfate/sulfonate, bicarbonate, and heavy metals such as nickel/cobalt, molybdate/tungstate, and iron, among others. Antibiotic resistance genes that mediate efflux, inactivation, and target protection were detected, while transposable elements carrying resistance phenotypes for antibiotics and heavy metals were also annotated. The findings from this study have established the resilience, adaptability, and survivability of the uncultured Paracoccus in the hydrocarbon-polluted soil.


Subject(s)
Bacterial Toxins , Clostridioides difficile , Metals, Heavy , Paracoccus , DNA Transposable Elements , ATP-Binding Cassette Transporters/genetics , Metagenome , Paracoccus/genetics , Clostridioides difficile/genetics , Anti-Bacterial Agents/pharmacology , Hydrocarbons , Soil/chemistry
3.
Ecotoxicology ; 30(6): 1251-1271, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33993436

ABSTRACT

Profiling of hydrocarbon-contaminated soils for antibiotic resistance genes (ARGs) is becoming increasingly important due to emerging realities of their preponderance in hydrocarbon-inundated matrices. In this study, the antibiotic resistome of an agricultural soil (1S) and agricultural soil contaminated with spent engine oil (AB1) were evaluated via functional annotation of the open reading frames (ORFs) of their metagenomes using the comprehensive antibiotic database (CARD) and KEGG KofamKOALA. CARD analysis of AB1 metagenome revealed the detection of 24 AMR (antimicrobial resistance) gene families, 66 ARGs, and the preponderance (69.7%) of ARGs responsible for antibiotic efflux in AB1 metagenome. CARD analysis of 1S metagenome revealed four AMR gene families and five ARGs. Functional annotation of the two metagenomes using KofamKOALA showed 171 ARGs in AB1 and 29 ARGs in 1S, respectively. Majority of the detected ARGs in AB1 (121; 70.8%) and 1S (16; 55.2%) using KofamKOALA are responsible for antibiotic efflux while ARGs for other resistance mechanisms were also detected. All the five major antibiotic efflux pump systems were detected in AB1 metagenome, though majority of the ARGs for antibiotic efflux belong to the RND (resistance-nodulation-cell division) and MFS (major facilitator superfamily) efflux systems. Significant differences observed in the ARGs recovered from 1S and AB1 metagenomes were statistically validated (P < 0.05). SEO contamination is believed to be responsible for ARGs increase in AB1 metagenome via mechanisms of cross-resistance especially with efflux pumps. The detection of these ARGs is of great public health concern in this era of multidrug resistant isolates resurgence.


Subject(s)
Anti-Bacterial Agents , Soil , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics , Genes, Bacterial , Metagenome , Soil Microbiology
4.
J Genet Eng Biotechnol ; 18(1): 70, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33175233

ABSTRACT

BACKGROUND: Soils polluted with animal charcoal from skin and hide cottage industries harbour extremely toxic and carcinogenic hydrocarbon pollutants and thus require a bio-based eco-friendly strategy for their depuration. The effects of carbon-free mineral medium (CFMM) amendment on hydrocarbon degradation and microbial community structure and function in an animal charcoal-polluted soil was monitored for 6 weeks in field moist microcosms consisting of CFMM-treated soil (FN4) and an untreated control (FN1). Hydrocarbon degradation was monitored using gas chromatography-flame ionization detector (GC-FID), and changes in microbial community structure were monitored using Kraken, while functional annotation of putative open reading frames (ORFs) was done using KEGG KofamKOALA and NCBI's conserved domain database (CDD). RESULTS: Gas chromatographic analysis of hydrocarbon fractions revealed the removal of 84.02% and 82.38% aliphatic and 70.09% and 70.14% aromatic fractions in FN4 and FN1 microcosms in 42 days. Shotgun metagenomic analysis of the two metagenomes revealed a remarkable shift in the microbial community structure. In the FN4 metagenome, 92.97% of the population belong to the phylum Firmicutes and its dominant representative genera Anoxybacillus (64.58%), Bacillus (21.47%) and Solibacillus (2.39%). In untreated FN1 metagenome, the phyla Proteobacteria (56.12%), Actinobacteria (23.79%) and Firmicutes (11.20%), and the genera Xanthobacter (9.73%), Rhizobium (7.49%) and Corynebacterium (7.35%), were preponderant. Functional annotation of putative ORFs from the two metagenomes revealed the detection of degradation genes for aromatic hydrocarbons, benzoate, xylene, chlorocyclohexane/chlorobenzene, toluene and several others in FN1 metagenome. In the FN4 metagenome, only seven hydrocarbon degradation genes were detected. CONCLUSION: This study revealed that though CFMM amendment slightly increases the rate of hydrocarbon degradation, it negatively impacts the structural and functional properties of the animal charcoal-polluted soil. It also revealed that intrinsic bioremediation of the polluted soil could be enhanced via addition of water and aeration.

5.
Environ Monit Assess ; 187(8): 525, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26209420

ABSTRACT

Metal uptake potentials of Pseudomonas aeruginosa CA207Ni, Burkholderia cepacia CA96Co, Rhodococcus sp. AL03Ni, and Corynebacterium kutscheri FL108Hg were studied to determine their competence in detoxification of toxic metals during growth. Metabolism-dependent metal biouptake of the bacteria revealed appreciable uptake of the metals (57-61, 10-30, 23-60, and 10-16 mg g dw(-1) of Ni(2+), Cr(6+), Co(2+), and Cd(2+), respectively) from medium, after initial drop in pH, without lag phase. The bacteria exhibited 95-100% removal efficiency for the metals from aqueous medium as 21 (±0.8)-84 (±2.0) concentration factors of the metals were transported into the bacterial systems. Passive adsorption onto the cell surfaces occurred within 2-h contact, and afterwards, there was continuous accumulation for 12 days. Biosorption data of the bacteria were only fitted into Langmuir isotherm model when strains AL96Co, CA207Ni, and AL03Ni interacted with Ni(2+), achieving maximum uptake of 9.87, 2.72, and 2.69 mg g dw(-1), respectively. This study established that the actively growing bacterial strains displayed, at least, 97.0% (±1.5) continuous active removals of metals upon adsorption. The bacteria would be good candidates for designing bioreactor useful in the detoxification campaign of heavy metal-polluted systems.


Subject(s)
Bacteria/metabolism , Metals, Heavy/metabolism , Water Pollutants, Chemical/metabolism , Adsorption , Bacteria/chemistry , Bacteria/growth & development , Biodegradation, Environmental , Metals, Heavy/chemistry , Water Pollutants, Chemical/chemistry
6.
J Basic Microbiol ; 53(11): 917-27, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23457074

ABSTRACT

Bioremediation of environments co-contaminated with hydrocarbons and heavy metals often pose a challenge as heavy metals exert toxicity to existing communities of hydrocarbon degraders. Multi-resistant bacterial strains were studied for ability to degrade hydrocarbons in chemically defined media amended with 5.0 mM Ni(2+), and Co(2+). The bacteria, Pseudomonas aeruginosa CA207Ni, Burkholderia cepacia AL96Co, and Corynebacterium kutscheri FL108Hg, utilized crude oil and anthracene without lag phase at specific growth rate spanning 0.3848-0.8259 per day. The bacterial populations grew in hydrocarbon media amended with nickel (Ni) and cobalt (Co) at 0.8393-1.801 days generation time (period of exponential growth, t = 15 days). The bacteria degraded 96.24-98.97, and 92.94-96.24% of crude oil, and anthracene, respectively, within 30 days without any impedance due to metal toxicity (at 5.0 mM). Rather, there was reduction of Ni and Co concentrations in the axenic culture 30 days post-inoculation to 0.08-0.12 and 0.11-0.15 mM, respectively. The metabolic functions of the bacteria are active in the presence of toxic metals (Ni and Co) while utilizing petroleum hydrocarbons for increase in biomass. These findings are useful to other baseline studies on decommissioning of sites co-contaminated with hydrocarbons and toxic metals.


Subject(s)
Burkholderia cepacia/metabolism , Cobalt/metabolism , Corynebacterium/metabolism , Hydrocarbons/metabolism , Metals, Heavy/metabolism , Nickel/metabolism , Pseudomonas aeruginosa/metabolism , Anthracenes/metabolism , Anti-Bacterial Agents/toxicity , Biotransformation , Burkholderia cepacia/drug effects , Burkholderia cepacia/growth & development , Cobalt/toxicity , Corynebacterium/drug effects , Corynebacterium/growth & development , Culture Media/chemistry , Drug Resistance, Bacterial , Metals, Heavy/toxicity , Nickel/toxicity , Petroleum/metabolism , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development
7.
Environ Monit Assess ; 185(8): 6809-18, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23315153

ABSTRACT

Chromium (VI) [Cr (VI)] biosorption by four resistant autochthonous bacterial strains was investigated to determine their potential for use in sustainable marine water-pollution control. Maximum exchange between Cr (VI) ions and protons on the cells surfaces were at 30-35 °C, pH 2.0 and 350-450 mg/L. The bacterial strains effectively removed 79.0-90.5 % Cr (VI) ions from solution. Furthermore, 85.3-93.0 % of Cr (VI) ions were regenerated from the biomasses, and 83.4-91.7 % of the metal was adsorbed when the biomasses was reused. Langmuir isotherm performed better than Freundlich isotherm, depicting that Cr (VI) affinity was in the sequence Rhodococcus sp. AL03Ni > Burkholderia cepacia AL96Co > Corynebacterium kutscheri FL108Hg > Pseudomonas aeruginosa CA207Ni. Biosorption isotherms confirmed that Rhodococcus sp. AL03Ni was a better biosorbent with a maximum uptake of 107.46 mg of Cr (VI) per g (dry weight) of biomass. The results highlight the high potential of the organisms for bacteria-based detoxification of Cr (VI) via biosorption.


Subject(s)
Bacteria/metabolism , Chromium/metabolism , Sewage/microbiology , Water Pollutants, Chemical/metabolism , Bacteria/isolation & purification , Biodegradation, Environmental , Chromium/analysis , Industry , Sewage/analysis , Wastewater/chemistry , Wastewater/microbiology , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...