Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Opt Express ; 31(12): 20364-20376, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37381432

ABSTRACT

Inverted perovskite solar cells (PSCs) attract researchers' attention for their potential application due to the low-temperature fabrication, negligible hysteresis and compatibility with multi-junction cells. However, the low-temperature fabricated perovskite films containing excessive undesired defects are not benefit for improving the performance of the inverted PSCs. In this work, we used a simple and effective passivation strategy that Poly(ethylene oxide) (PEO) polymer as an antisolvent additive to modify the perovskite films. The experiments and simulations have shown that the PEO polymer can effectively passivate the interface defects of the perovskite films. The defect passivation by PEO polymers suppressed non-radiative recombination, resulting in an increase in power conversion efficiency (PCE) of the inverted devices from 16.07% to 19.35%. In addition, the PCE of unencapsulated PSCs after PEO treatment maintains 97% of its original stored in a nitrogen atmosphere for 1000 h.

2.
Sci Rep ; 13(1): 7233, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142618

ABSTRACT

Reduction of the crosstalk (CT) between contiguous photonic components is still a big challenge in fabricating high packing density photonic integrated circuits (PICs). Few techniques to accomplish that goal have been offered in recent years but all in the near-IR region. In this paper, we report a design for realizing a highly efficient CT reduction in the MIR regime, for the first time to the best of our knowledge. The reported structure is based on the silicon-on-calcium-fluoride (SOCF) platform with uniform Ge/Si strip arrays. Using Ge strips shows better CT reduction and longer coupling length (Lc) than the conventional Si based devices over a wide bandwidth in the MIR region. The effect of adding a different number of Ge and Si strips with different dimensions between two adjacent Si waveguides on the Lc and hence on the CT is analyzed using both full vectorial finite element method and 3D finite difference time domain method. An increase in the Lc by 4 orders of magnitude and 6.5 times are obtained using Ge and Si strips, respectively, compared to strips-free Si waveguides. Consequently, crosstalk suppression of - 35 dB and - 10 dB for the Ge and Si strips, respectively, is shown. The proposed structure is beneficial for high packing density nanophotonic devices in the MIR regime, such as switches, modulators, splitters, and wavelength division (de)multiplexers, which are important for MIR communication integrated circuits, spectrometers, and sensors.

3.
Appl Opt ; 60(30): 9488-9496, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34807090

ABSTRACT

Recently, photonic crystal fibers (PCFs) have become of significant interest due to their various applications, especially in the mid-infrared (mid-IR) regime. In this work, an optical mid-IR modulator based on silicon D-shaped PCF (Si-D-PCF) with vanadium dioxide (VO2) as a phase changing material (PCM) is presented and analyzed. Thanks to the phase transition of the VO2 material between insulating (ON) and conducting (OFF) states, the modulation process can be attained. The well-known full vectorial finite element method is utilized to numerically analyze the proposed design. Further, the propagation of light through the suggested structure is studied using the 3D finite difference time domain method. The optical losses of the fundamental TM mode supported by the Si-D-PCF structure in both ON and OFF states are investigated. The obtained results reveal that the extinction ratio (ER) of the reported modulator approaches 236 dB, while the insertion loss (IL) is less than 1.3 dB over the studied wavelength range 3-7 µm at a device length (LD) of 0.5 mm. Additionally, the ER of the proposed modulator is higher than 56 dB through the whole studied wavelength range. Therefore, the proposed modulator could be utilized in photonic integrated circuits that require high ER, low IL, and large bandwidth. To the best of the authors' knowledge, this is the first time an infrared optical modulator based on Si-D-PCF with VO2 material has been presented.

4.
Appl Opt ; 60(25): 7671-7677, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34613237

ABSTRACT

In this study, a compact mode converter based on an asymmetric dual-core photonic crystal fiber (ADC-PCF) infiltrated with nematic liquid crystal (NLC) is reported. The full vectorial finite difference method is used to compute the modal characteristics of the studied transverse magnetic (TM) mode. In this investigation, the geometrical and material parameters of the proposed mode converter are studied to achieve high wavelength selectivity with a compact device length. The proposed mode converter has a compact device length of 403.6 µm at λ=1.3µm. In addition, the reported device is simulated under different temperature levels from 15°C to 45°C to show the thermal tunability. Therefore, the proposed design can be used efficiently in integrated photonic circuits.

5.
Opt Express ; 29(9): 13641-13656, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33985095

ABSTRACT

Nanostructured semiconductor nanowires (NWs) present a smart solution for broadband absorption solar cells (SCs) with high efficiency and low-cost. In this paper, a novel design of quad crescent-shaped silicon NW SC is introduced and numerically studied. The suggested NW has quad crescent shapes which create a cavity between any adjacent NWs. Such a cavity will permit multiple light scattering with improved absorption. Additionally, new modes will be excited along the NWs, which are highly coupled with the incident light. Further, the surface reflection from the crescent NWs is decreased due to the reduced surface filling ratio. The finite difference time domain method is utilized to analyze the optical characteristics of the reported structure. The proposed NW offers short circuit current density (Jsc) of 27.8 mA/cm2 and ultimate efficiency (ηul) of 34% with an enhancement of 14% and volume reduction of 40% compared to the conventional NWs. The Jsc and ηul are improved to 35.8 mA/cm2 and 43.7% by adding a Si substrate and back reflector to the suggested crescent NWs.

6.
RSC Adv ; 11(62): 39262-39269, 2021 Dec 06.
Article in English | MEDLINE | ID: mdl-35492487

ABSTRACT

In this paper, we studied the electrochemical capacitive performance of thermally evaporated copper iodide thin film doped with different quantities of Al (3, 5, 7, and 9 mol%). The morphological structure, crystalline nature, and surface composition of the deposited films with different dopant levels were confirmed using X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field-emission scanning electron microscopy (FE-SEM). The electrochemical performance was evaluated based on cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) measurements, and electrochemical impedance spectroscopy (EIS) in a Na2SO4 electrolyte. The XRD results confirm that the film is crystalline and has a face-centered cubic structure. The SEM images revealed trihedral-tipped structures with irregular nanocubes. The presence of the trihedral-tipped structures is more obvious in the Al-doped CuI films than in the bare film. We report a progressive increase in the specific capacitance values as the aluminum content increases, from 91.5 F g-1 for the pure CuI film to 108.3, 126.2, 142.8, and 131.1 F g-1 for the films with aluminum content of 3, 5, 7, and 9 mol%, respectively at a scan rate of 2 mV s-1. The optimized CuI-Al electrode with 7 mol% aluminum content showed remarkable long-term cycling stability with 89.1% capacitance retention after 2000 charge/discharge cycles. Such a high performance for the CuI-7Al film as a supercapacitor can be ascribed to the aluminum doping, which increases the electrochemically active area compared to the bare CuI film and is critical for electron exchange at the electrode/electrolyte interface. Therefore, we introduce CuI-Al as a viable option for supercapacitor applications because of its low-cost production, excellent electrochemical performance, and cycling stability.

7.
Opt Express ; 28(21): 31020-31033, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33115086

ABSTRACT

In recent years, newly emerging photovoltaic (PV) devices based on silicon nanowire solar cells (SiNW-SCs) have attracted considerable research attention. This is due to their efficient light-trapping capability and large carrier transportation and collection with compact size. However, there is a strong desire to find effective strategies to provide high and wideband optical absorption. In this paper, a modified circular nanowire (NW) with a nanocrescent hole is newly introduced and analyzed for solar cell applications. The crescent hole can strongly improve the light absorption through the NW due to the excitation of numbers of modes that can be coupled with the incident light. The material index, volume, and position of the nanohole are studied to significantly increase the optical absorption efficiency and hence the power conversion efficiency (PCE). The absorption performance can be further preserved by using a silicon substrate due to the coupling between the supported modes by the NW, and that of the substrate. The optical and electrical characteristics of the suggested design are investigated using finite difference time domain and finite element methods via Lumerical software packages. The reported asymmetric design offers higher optical and electrical efficiencies compared to the conventional NW counterpart. The proposed NW offers a short circuit current density (Jsc) of 33.85 (34.35) mA/cm2 and power conversion efficiency (PCE) of 16.78 (17.05) % with an enhancement of 16.3 (16.8) % and 17.3 (18.4) % for transverse magnetic (TM) and transverse electric (TE) polarizations, respectively, compared to the conventional cylindrical counterpart.

8.
Sci Rep ; 10(1): 11529, 2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32661281

ABSTRACT

Despite that Hyperbolic Metamaterial (HMM) has demonstrated sub-wavelength focusing inside of it, sub-wavelength imaging in free space of HMM is rarely introduced. The decay of hyperbolic momentum space outside the hyperbolic medium has hindered the realization of sub-wavelengh focusing in the near field of HMM. Furthermore, manipulating the negatively refracted waves exiting the HMM have addressed another major obstacle to realize free space sub-wavelength focusing. In this work, we report extended sub-wavelength focusing in free space based on negative refraction of light exiting the HMM. The proposed structure is composed of multilayers of doped InAs/intrinsic InAs integrated with metallic slit. We theoretically simulate the doped InAs/intrinsic InAs HMM and investigate the negative refraction behavior outside the HMM. We optimized the structure for achieving high resolution down to 0.2λ, extended to a distance of 3.2 µm in free space. Also, sub-wavelength focusing in free space has been studied at different doping concentrations showing that the small doping concentrations exhibit enhancement in resolution at short distances up to 600 nm away from the HMM. Extending the focusing distance is achieved up to distance 3.5 µm from the hyperbolic structure by manipulating the doping concentration. This proposed lens configuration is expected to find potential usage in mid IR thermal imaging and photolithography application.

9.
Opt Express ; 27(26): 37454-37468, 2019 Dec 23.
Article in English | MEDLINE | ID: mdl-31878525

ABSTRACT

Nowadays, the development of modern optical systems relies on optical device size minimization and operating power reduction. Optical modulator based on silicon on insulator (SOI) platform is a key element in different optical systems. Therefore, the optical modulator with compact size and low insertion loss could improve the optical system efficiency. In this work, a novel compact optical modulator based on hybrid plasmonic/silicon layers is introduced. The full vectorial finite element method (FV-FEM) is used to numerically analyze the proposed design. Vanadium dioxide (VO2) is also utilized as a cap layer to control the modulation process. The insertion loss (IL) and extinction ratio (ER) of the suggested modulator are equal to 2.1 dB/µm and 28 dB/µm, respectively, at the operating wavelength 1.55 µm. Consequently, high figure-of-merit (FoM) =ER/IL = 13.5 is achieved with an optical bandwidth (ER > 3 dB) greater than 1 µm, which is large in comparison to pervious designs.

10.
Appl Opt ; 58(24): 6684-6692, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31503601

ABSTRACT

Transverse-magnetic (TM) and transverse-electric (TE) pass polarizers based on a silicon-on-insulator platform are studied and analyzed. The proposed structures are CMOS-compatible based on indium tin oxide and zirconium nitride as alternative plasmonic materials. The bi-metallic combination of the plasmonic materials exhibit large coupling between one of the modes (TE or TM) in the silicon core and the surface plasmon mode, while the other mode can propagate with low losses. The numerical simulations for the TE-pass polarizer predict 32.7 dB extinction ratio (ER) and 0.13 dB insertion loss (IL) at a compact device length of 1.5 µm. Additionally, the TM-pass polarizer has 31.5 dB ER and 0.17 dB IL at a device length of 2 µm at an operating wavelength of 1.55 µm.

11.
Sci Rep ; 9(1): 6139, 2019 Apr 16.
Article in English | MEDLINE | ID: mdl-30992492

ABSTRACT

In this paper, we introduce the quantum mechanical approach as a more physically-realistic model to accurately quantify the electron-photon interaction in Photon-induced near-field electron microscopy (PINEM). Further, we compare the maximum coupling speed between the electrons and the photons in the quantum and classical regime. For a nanosphere of radius 2.13 nm, full quantum calculations show that the maximum coupling between photon and electron occurs at a slower speed than classical calculations report. In addition, a significant reduction in PINEM field intensity is observed for the full quantum model. Furthermore, we discuss the size limitation for particles imaged using the PIMEN technique and the role of the background material in improving the PINEM intensity. We further report a significant reduction in PINEM intensity in nearly touching plasmonic particles (0.3 nm gap) due to tunneling effect.

12.
Opt Express ; 24(10): 10495-511, 2016 May 16.
Article in English | MEDLINE | ID: mdl-27409873

ABSTRACT

We propose an accurate and computationally efficient rational Chebyshev multi-domain pseudo-spectral method (RC-MDPSM) for modal analysis of optical waveguides. For the first time, we introduce rational Chebyshev basis functions to efficiently handle semi-infinite computational subdomains. In addition, the efficiency of these basis functions is enhanced by employing an optimized algebraic map; thus, eliminating the use of PML-like absorbing boundary conditions. For leaky modes, we derived a leaky modes boundary condition at the guide-substrate interface providing an efficient technique to accurately model leaky modes with very small refractive index imaginary part. The efficiency and numerical precision of our technique are demonstrated through the analysis of high-index contrast dielectric and plasmonic waveguides, and the highly-leaky ARROW structure; where finding ARROW leaky modes using our technique clearly reflects its robustness.

13.
Opt Express ; 24(14): A1107-22, 2016 Jul 11.
Article in English | MEDLINE | ID: mdl-27410898

ABSTRACT

In this paper, a novel design of tapered dipole nanoantenna is introduced and numerically analyzed for energy harvesting applications. The proposed design consists of three steps tapered dipole nanoantenna with rectangular shape. Full systematic analysis is carried out where the antenna impedance, return loss, harvesting efficiency and field confinement are calculated using 3D finite element frequency domain method (3D-FEFD). The structure geometrical parameters are optimized using particle swarm algorithm (PSO) to improve the harvesting efficiency and reduce the return loss at wavelength of 500 nm. A harvesting efficiency of 55.3% is achieved which is higher than that of conventional dipole counterpart by 29%. This enhancement is attributed to the high field confinement in the dipole gap as a result of multiple tips created in the nanoantenna design. Furthermore, the antenna input impedance is tuned to match a wide range of fabricated diode based upon the multi-resonance characteristic of the proposed structure.

14.
J Phys Chem B ; 120(18): 4243-8, 2016 05 12.
Article in English | MEDLINE | ID: mdl-27077688

ABSTRACT

Chloride is an essential cofactor in the oxygen-evolution reaction that takes place in photosystem II (PSII). The oxygen-evolving complex (OEC) is oxidized in a linear four-step photocatalytic cycle in which chloride is required for the OEC to advance beyond the S2 state. Here, using density functional theory, we compare the energetics and spin configuration of two different states of the Mn4CaO5 cluster in the S2 state: state A with Mn1(3+) and B with Mn4(3+) with and without chloride. The calculations suggest that model B with an S = 5/2 ground state occurs in the chloride-depleted PSII, which may explain the presence of the EPR signal at g = 4.1. Moreover, we use multiconformer continuum electrostatics to study the effect of chloride depletion on the redox potential associated with the S1/S2 and S2/S3 transitions.


Subject(s)
Chlorides/chemistry , Coordination Complexes/chemistry , Oxygen/chemistry , Photosystem II Protein Complex/chemistry , Calcium/chemistry , Electron Spin Resonance Spectroscopy , Hydrogen Bonding , Manganese/chemistry , Oxidation-Reduction , Photosystem II Protein Complex/metabolism
15.
Opt Lett ; 41(5): 1010-3, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26974103

ABSTRACT

In this Letter, funnel-shaped silicon nanowires (SiNWs) are newly introduced for highly efficient light trapping. The proposed designs of nanowires are inspired by the funnel shape, which enhances the light trapping with reduced reflections in the wavelength range from 300 to 1100 nm. Composed of both cylindrical and conical units, the funnel nanowires increase the number of leaky mode resonances, yielding an absorption enhancement relative to a uniform nanowire array. The optical properties of the suggested nanowires have been numerically investigated using the 3D finite difference time domain (FDTD) method and compared to cylindrical and conical counterparts. The structural geometrical parameters are studied to maximize the ultimate efficiency and hence the short-circuit current. Carefully engineered structure geometry is shown to yield improved light absorption useful for solar cell applications. The proposed funnel-shaped SiNWs offer an ultimate efficiency of 41.8%, with an enhancement of 54.8% relative to conventional cylindrical SiNWs. Additionally, short-circuit current of 34.2 mA/cm2 is achieved using the suggested design.

16.
Opt Express ; 23(17): 22199-213, 2015 Aug 24.
Article in English | MEDLINE | ID: mdl-26368193

ABSTRACT

In this paper, a new finite element method (FEM) is proposed to analyse time domain wave propagation in photonic devices. Dissimilar to conventional FEM, efficient "inter-element" matrices are accurately formed through smoothing the field derivatives across element boundaries. In this sense, the new approach is termed "smoothed FEM" (SFETD). For time domain analysis, the propagation is made via the time domain beam propagation method (TD-BPM). Relying on first order elements, our suggested SFETD-BPM enjoys accuracy levels comparable to second-order conventional FEM; thanks to the element smoothing. The proposed method numerical performance is tested through applicating on analysis of a single mode slab waveguide, optical grating structure, and photonic crystal cavity. It is clearly demonstrated that our method is not only accurate but also more computationally efficient (far few run time, and memory requirements) than the conventional FEM approach. The SFETD-BPM is also extended to deal with the very challenging problem of dispersive materials. The material dispersion is smartly utilized to enhance the quality factor of photonic crystal cavity.

17.
Opt Express ; 23(6): 7007-20, 2015 Mar 23.
Article in English | MEDLINE | ID: mdl-25837045

ABSTRACT

A novel ultra-high tunable photonic crystal fiber (PCF) polarization filter is proposed and analyzed using finite element method. The suggested design has a central hole infiltrated with a nematic liquid crystal (NLC) that offers high tunability with temperature and external electric field. Moreover, the PCF is selectively filled with metal wires into cladding air holes. Results show that the resonance losses and wavelengths are different in x and y polarized directions depending on the rotation angle φ of the NLC. The reported filter of compact device length 0.5 mm can achieve 600 dB / cm resonance losses at φ = 90° for x-polarized mode at communication wavelength of 1300 mm with low losses of 0.00751 dB / cm for y-polarized mode. However, resonance losses of 157.71 dB / cm at φ = 0° can be achieved for y-polarized mode at the same wavelength with low losses of 0.092 dB / cm for x-polarized mode.

18.
Opt Lett ; 36(16): 3133-5, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21847184

ABSTRACT

We propose and analyze a novel (to the best of our knowledge) design of a polarization rotator (PR) based on silica photonic crystal fiber. The proposed design has a rectangular core region with a slanted sidewall. The simulation results are obtained using the full vectorial finite difference method as well as the full vectorial finite difference beam propagation method. The numerical results reveal that the suggested PR can provide a nearly 100% polarization conversion ratio with a device length of 3102 µm.

19.
Appl Opt ; 47(16): 2961-70, 2008 Jun 01.
Article in English | MEDLINE | ID: mdl-18516113

ABSTRACT

A rigorous, full-vectorial and computationally efficient finite-element-based modal solution, together with junction analysis and beam propagation approaches have been used to study bending loss, transition loss, mode coupling, and polarization coupling in bent optical waveguides. The waveguide offset and their widths have been optimized to reduce the transition loss and the mode beating.

SELECTION OF CITATIONS
SEARCH DETAIL
...