Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Soc Mass Spectrom ; 32(10): 2615-2620, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34549585

ABSTRACT

Mass filter operation in higher stability zones is known to provide better resolution. Unfortunately, for sine driven instruments, higher stability zone operation reduces the accessible mass range and increases the degenerative effects of fringe fields. Conversely, digitally driven mass filters do not suffer from loss of mass range, and the fringe field effects do not increase significantly by switching stability zones because the AC voltage is always constant and the DC voltage is always zero. This work catalogues 12 stability zones that are accessible with the new digital waveform generation technology. These zones have theoretical baseline resolving powers that range from 22 to 1 300 000 with pseudopotential well depths that range from 3.5 to 43 V. Operation in higher stability zones also has the advantage of aligned axial stability wells. That alignment maximizes the pseudopotential well depth for each higher stability zone, making them more than an order of magnitude greater than the standard ∼0.2 V well of a sine filter operating in the first stability zone at unit resolution. Increased pseudopotential well depth correlates with better ion transmission and sensitivity. Our theoretical examination suggests that the digital mass filter can obtain both high resolution and high sensitivity with essentially unlimited mass range.

SELECTION OF CITATIONS
SEARCH DETAIL
...