Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychol ; 13: 871028, 2022.
Article in English | MEDLINE | ID: mdl-35668978

ABSTRACT

This article extends the combinatorial approach to support the determination of contextuality amidst causal influences. Contextuality is an active field of study in Quantum Cognition, in systems relating to mental phenomena, such as concepts in human memory. In the cognitive field of study, a contemporary challenge facing the determination of whether a phenomenon is contextual has been the identification and management of disturbances. Whether or not said disturbances are identified through the modeling approach, constitute causal influences, or are disregardableas as noise is important, as contextuality cannot be adequately determined in the presence of causal influences. To address this challenge, we first provide a formalization of necessary elements of the combinatorial approach within the language of canonical causal models. Through this formalization, we extend the combinatorial approach to support a measurement and treatment of disturbance, and offer techniques to separately distinguish noise and causal influences. Thereafter, we develop a protocol through which these elements may be represented within a cognitive experiment. As human cognition seems rife with causal influences, cognitive modelers may apply the extended combinatorial approach to practically determine the contextuality of cognitive phenomena.

2.
PLoS One ; 14(1): e0208555, 2019.
Article in English | MEDLINE | ID: mdl-30608937

ABSTRACT

This article explores how probabilistic programming can be used to simulate quantum correlations in an EPR experimental setting. Probabilistic programs are based on standard probability which cannot produce quantum correlations. In order to address this limitation, a hypergraph formalism was programmed which both expresses the measurement contexts of the EPR experimental design as well as associated constraints. Four contemporary open source probabilistic programming frameworks were used to simulate an EPR experiment in order to shed light on their relative effectiveness from both qualitative and quantitative dimensions. We found that all four probabilistic languages successfully simulated quantum correlations. Detailed analysis revealed that no language was clearly superior across all dimensions, however, the comparison does highlight aspects that can be considered when using probabilistic programs to simulate experiments in quantum physics.


Subject(s)
Computer Simulation , Probability , Programming Languages , Quantum Theory , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...