Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 12(2): e0114423, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38230938

ABSTRACT

While numerous health-beneficial interactions between host and microbiota have been identified, there is still a lack of targeted approaches for modulating these interactions. Thus, we here identify precision prebiotics that specifically modulate the abundance of a microbiome member species of interest. In the first step, we show that defining precision prebiotics by compounds that are only taken up by the target species but no other species in a community is usually not possible due to overlapping metabolic niches. Subsequently, we use metabolic modeling to identify precision prebiotics for a two-member Caenorhabditis elegans microbiome community comprising the immune-protective target species Pseudomonas lurida MYb11 and the persistent colonizer Ochrobactrum vermis MYb71. We experimentally confirm four of the predicted precision prebiotics, L-serine, L-threonine, D-mannitol, and γ-aminobutyric acid, to specifically increase the abundance of MYb11. L-serine was further assessed in vivo, leading to an increase in MYb11 abundance also in the worm host. Overall, our findings demonstrate that metabolic modeling is an effective tool for the design of precision prebiotics as an important cornerstone for future microbiome-targeted therapies.IMPORTANCEWhile various mechanisms through which the microbiome influences disease processes in the host have been identified, there are still only few approaches that allow for targeted manipulation of microbiome composition as a first step toward microbiome-based therapies. Here, we propose the concept of precision prebiotics that allow to boost the abundance of already resident health-beneficial microbial species in a microbiome. We present a constraint-based modeling pipeline to predict precision prebiotics for a minimal microbial community in the worm Caenorhabditis elegans comprising the host-beneficial Pseudomonas lurida MYb11 and the persistent colonizer Ochrobactrum vermis MYb71 with the aim to boost the growth of MYb11. Experimentally testing four of the predicted precision prebiotics, we confirm that they are specifically able to increase the abundance of MYb11 in vitro and in vivo. These results demonstrate that constraint-based modeling could be an important tool for the development of targeted microbiome-based therapies against human diseases.


Subject(s)
Microbiota , Prebiotics , Pseudomonas , Animals , Humans , Caenorhabditis elegans , Serine
2.
Nat Microbiol ; 8(10): 1809-1819, 2023 10.
Article in English | MEDLINE | ID: mdl-37653009

ABSTRACT

Most microbes evolve faster than their hosts and should therefore drive evolution of host-microbe interactions. However, relatively little is known about the characteristics that define the adaptive path of microbes to host association. Here we identified microbial traits that mediate adaptation to hosts by experimentally evolving the free-living bacterium Pseudomonas lurida with the nematode Caenorhabditis elegans as its host. After ten passages, we repeatedly observed the evolution of beneficial host-specialist bacteria, with improved persistence in the nematode being associated with increased biofilm formation. Whole-genome sequencing revealed mutations that uniformly upregulate the bacterial second messenger, cyclic diguanylate (c-di-GMP). We subsequently generated mutants with upregulated c-di-GMP in different Pseudomonas strains and species, which consistently increased host association. Comparison of pseudomonad genomes from various environments revealed that c-di-GMP underlies adaptation to a variety of hosts, from plants to humans. This study indicates that c-di-GMP is fundamental for establishing host association.


Subject(s)
Escherichia coli Proteins , Nematoda , Animals , Humans , Escherichia coli Proteins/genetics , Bacterial Proteins/genetics , Symbiosis , Bacteria
3.
bioRxiv ; 2023 Feb 18.
Article in English | MEDLINE | ID: mdl-36824941

ABSTRACT

The microbiome is increasingly receiving attention as an important modulator of host health and disease. However, while numerous mechanisms through which the microbiome influences its host have been identified, there is still a lack of approaches that allow to specifically modulate the abundance of individual microbes or microbial functions of interest. Moreover, current approaches for microbiome manipulation such as fecal transfers often entail a non-specific transfer of entire microbial communities with potentially unwanted side effects. To overcome this limitation, we here propose the concept of precision prebiotics that specifically modulate the abundance of a microbiome member species of interest. In a first step, we show that defining precision prebiotics by compounds that are only taken up by the target species but no other species in a community is usually not possible due to overlapping metabolic niches. Subsequently, we present a metabolic modeling network framework that allows us to define precision prebiotics for a two-member C. elegans microbiome model community comprising the immune-protective Pseudomonas lurida MYb11 and the persistent colonizer Ochrobactrum vermis MYb71. Thus, we predicted compounds that specifically boost the abundance of the host-beneficial MYb11, four of which were experimentally validated in vitro (L-serine, L-threonine, D-mannitol, and γ-aminobutyric acid). L-serine was further assessed in vivo, leading to an increase in MYb11 abundance also in the worm host. Overall, our findings demonstrate that constraint-based metabolic modeling is an effective tool for the design of precision prebiotics as an important cornerstone for future microbiome-targeted therapies.

4.
ISME J ; 15(12): 3648-3656, 2021 12.
Article in English | MEDLINE | ID: mdl-34158630

ABSTRACT

The concept of fitness is often reduced to a single component, such as the replication rate in a given habitat. For species with multi-step life cycles, this can be an unjustified oversimplification, as every step of the life cycle can contribute to the overall reproductive success in a specific way. In particular, this applies to microbes that spend part of their life cycles associated to a host. In this case, there is a selection pressure not only on the replication rates, but also on the phenotypic traits associated to migrating from the external environment to the host and vice-versa (i.e., the migration rates). Here, we investigate a simple model of a microbial lineage living, replicating, migrating and competing in and between two compartments: a host and an environment. We perform a sensitivity analysis on the overall growth rate to determine the selection gradient experienced by the microbial lineage. We focus on the direction of selection at each point of the phenotypic space, defining an optimal way for the microbial lineage to increase its fitness. We show that microbes can adapt to the two-compartment life cycle through either changes in replication or migration rates, depending on the initial values of the traits, the initial distribution across the two compartments, the intensity of competition, and the time scales involved in the life cycle versus the time scale of adaptation (which determines the adequate probing time to measure fitness). Overall, our model provides a conceptual framework to study the selection on microbes experiencing a host-associated life cycle.


Subject(s)
Adaptation, Physiological , Reproduction , Animals , Life Cycle Stages , Phenotype
5.
Trends Microbiol ; 29(9): 779-787, 2021 09.
Article in English | MEDLINE | ID: mdl-33674142

ABSTRACT

Microbiota-host associations are ubiquitous in nature. They are often studied using a host-centered view, while microbes are assumed to have coevolved with hosts or colonize hosts as nonadapted entities. Both assumptions are often incorrect. Instead, many host-associated microbes are adapted to a biphasic life cycle in which they alternate between noncoadapted hosts and a free-living phase. Full appreciation of microbiota-host symbiosis thus needs to consider how microbes optimize fitness across this life cycle. Here, we evaluate the key stages of the biphasic life cycle and propose a new conceptual framework for microbiota-host interactions which includes an integrative measure of microbial fitness, related to the parasite fitness parameter R0, and which will help in-depth assessment of the evolution of these widespread associations.


Subject(s)
Biological Evolution , Host Microbial Interactions , Microbiota , Animals , Humans , Symbiosis
6.
mBio ; 11(4)2020 07 21.
Article in English | MEDLINE | ID: mdl-32694140

ABSTRACT

Colicins are toxins produced and released by Enterobacteriaceae to kill competitors in the gut. While group A colicins employ a division of labor strategy to liberate the toxin into the environment via colicin-specific lysis, group B colicin systems lack cognate lysis genes. In Salmonella enterica serovar Typhimurium (S. Tm), the group B colicin Ib (ColIb) is released by temperate phage-mediated bacteriolysis. Phage-mediated ColIb release promotes S. Tm fitness against competing Escherichia coli It remained unclear how prophage-mediated lysis is realized in a clonal population of ColIb producers and if prophages contribute to evolutionary stability of toxin release in S. Tm. Here, we show that prophage-mediated lysis occurs in an S. Tm subpopulation only, thereby introducing phenotypic heterogeneity to the system. We established a mathematical model to study the dynamic interplay of S. Tm, ColIb, and a temperate phage in the presence of a competing species. Using this model, we studied long-term evolution of phage lysis rates in a fluctuating infection scenario. This revealed that phage lysis evolves as bet-hedging strategy that maximizes phage spread, regardless of whether colicin is present or not. We conclude that the ColIb system, lacking its own lysis gene, is making use of the evolutionary stable phage strategy to be released. Prophage lysis genes are highly prevalent in nontyphoidal Salmonella genomes. This suggests that the release of ColIb by temperate phages is widespread. In conclusion, our findings shed new light on the evolution and ecology of group B colicin systems.IMPORTANCE Bacteria are excellent model organisms to study mechanisms of social evolution. The production of public goods, e.g., toxin release by cell lysis in clonal bacterial populations, is a frequently studied example of cooperative behavior. Here, we analyze evolutionary stabilization of toxin release by the enteric pathogen Salmonella The release of colicin Ib (ColIb), which is used by Salmonella to gain an edge against competing microbiota following infection, is coupled to bacterial lysis mediated by temperate phages. Here, we show that phage-dependent lysis and subsequent release of colicin and phage particles occurs only in part of the ColIb-expressing Salmonella population. This phenotypic heterogeneity in lysis, which represents an essential step in the temperate phage life cycle, has evolved as a bet-hedging strategy under fluctuating environments such as the gastrointestinal tract. Our findings suggest that prophages can thereby evolutionarily stabilize costly toxin release in bacterial populations.


Subject(s)
Colicins/biosynthesis , Evolution, Molecular , Plasmids/genetics , Prophages/genetics , Salmonella typhimurium/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Genome, Bacterial , Mutation , Plasmids/metabolism , Salmonella typhimurium/metabolism
7.
ISME J ; 14(1): 26-38, 2020 01.
Article in English | MEDLINE | ID: mdl-31484996

ABSTRACT

The microbiota is generally assumed to have a substantial influence on the biology of multicellular organisms. The exact functional contributions of the microbes are often unclear and cannot be inferred easily from 16S rRNA genotyping, which is commonly used for taxonomic characterization of bacterial associates. In order to bridge this knowledge gap, we here analyzed the metabolic competences of the native microbiota of the model nematode Caenorhabditis elegans. We integrated whole-genome sequences of 77 bacterial microbiota members with metabolic modeling and experimental characterization of bacterial physiology. We found that, as a community, the microbiota can synthesize all essential nutrients for C. elegans. Both metabolic models and experimental analyses revealed that nutrient context can influence how bacteria interact within the microbiota. We identified key bacterial traits that are likely to influence the microbe's ability to colonize C. elegans (i.e., the ability of bacteria for pyruvate fermentation to acetoin) and affect nematode fitness (i.e., bacterial competence for hydroxyproline degradation). Considering that the microbiota is usually neglected in C. elegans research, the resource presented here will help our understanding of this nematode's biology in a more natural context. Our integrative approach moreover provides a novel, general framework to characterize microbiota-mediated functions.


Subject(s)
Bacteria/metabolism , Caenorhabditis elegans/microbiology , Microbiota , Animals , Bacteria/genetics , Bacteria/isolation & purification , Caenorhabditis elegans/metabolism , Metabolic Networks and Pathways/genetics
8.
EMBO J ; 36(9): 1134-1146, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28258061

ABSTRACT

Conventionally, neuronal development is regarded to follow a stereotypic sequence of neurogenesis, migration, and differentiation. We demonstrate that this notion is not a general principle of neuronal development by documenting the timing of mitosis in relation to multiple differentiation events for bipolar cells (BCs) in the zebrafish retina using in vivo imaging. We found that BC progenitors undergo terminal neurogenic divisions while in markedly disparate stages of neuronal differentiation. Remarkably, the differentiation state of individual BC progenitors at mitosis is not arbitrary but matches the differentiation state of post-mitotic BCs in their surround. By experimentally shifting the relative timing of progenitor division and differentiation, we provide evidence that neurogenesis and differentiation can occur independently of each other. We propose that the uncoupling of neurogenesis and differentiation could provide neurogenic programs with flexibility, while allowing for synchronous neuronal development within a continuously expanding cell pool.


Subject(s)
Cell Differentiation , Cell Division , Neurogenesis , Retina/embryology , Retinal Bipolar Cells/physiology , Zebrafish/embryology , Animals
9.
Trends Microbiol ; 24(6): 440-449, 2016 06.
Article in English | MEDLINE | ID: mdl-26826796

ABSTRACT

Bacteria and phages have traditionally been viewed as 'antagonists'. However, temperate phages can transfer genes, which can broaden their bacterial hosts' metabolic repertoire, confer or enhance virulence, or eliminate competing organisms, and so enhance bacterial fitness. Recent evidence shows that phages can also promote biofilm formation leading to population-level benefits for their bacterial hosts. Here, we provide a perspective on the ecological and evolutionary consequences for the bacteria interacting with phages, when phage and host interests are aligned. Furthermore, we examine the question whether bacterial hosts can lower immune barriers to phage infection, thereby facilitating infection by beneficial phages. Taking recent evidence together, we suggest that in many cases temperate phages are to be considered as being mutualistic as well as parasitic, at the same time.


Subject(s)
Bacteria/virology , Bacteriophages/physiology , Ecology , Evolution, Molecular , Host-Pathogen Interactions/physiology , Symbiosis , Bacteria/genetics , Bacteria/immunology , Bacteria/metabolism , Bacteriophages/genetics , Bacteriophages/pathogenicity , Biofilms/growth & development , Biological Coevolution , CRISPR-Cas Systems , Genome, Viral , Host-Pathogen Interactions/genetics , Phenotype , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...