Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Mol Bioeng ; 16(1): 23-39, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36660589

ABSTRACT

Introduction: Obesity is associated with increased breast cancer incidence, recurrence, and mortality. Adipocytes and adipose-derived stem cells (ASCs), two resident cell types in adipose tissue, accelerate the early stages of breast cancer progression. It remains unclear whether obesity plays a role in the subsequent escape of malignant breast cancer cells into the local circulation. Methods: We engineered models of human breast tumors with adipose stroma that exhibited different obesity-specific alterations. We used these models to assess the invasion and escape of breast cancer cells into an empty, blind-ended cavity (as a mimic of a lymphatic vessel) for up to sixteen days. Results: Lean and obese donor-derived adipose stroma hastened escape to similar extents. Moreover, a hypertrophic adipose stroma did not affect the rate of adipose-induced escape. When admixed directly into the model tumors, lean and obese donor-derived ASCs hastened escape similarly. Conclusions: This study demonstrates that the presence of adipose cells, independently of the obesity status of the adipose tissue donor, hastens the escape of human breast cancer cells in multiple models of obesity-associated breast cancer. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-022-00750-y.

2.
Cell Mol Bioeng ; 15(1): 15-29, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35096184

ABSTRACT

INTRODUCTION: Approximately 20-25% of human breast tumors are found within an adipose, rather than fibrous, stroma. Adipose stroma is associated with an increased risk of lymph node metastasis, but the causal association between adipose stroma and metastatic progression in human breast cancer remains unclear. METHODS: We used micropatterned type I collagen gels to engineer ~3-mm-long microscale human breast tumors within a stroma that contains adipocytes and adipose-derived stem cells (ASCs) (collectively, "adipose cells"). Invasion and escape of human breast cancer cells into an empty 120-µm-diameter lymphatic-like cavity was used to model interstitial invasion and vascular escape in the presence of adipose cell-derived factors for up to 16 days. RESULTS: We found that adipose cells hasten invasion and escape by 1-2 days and 2-3 days, respectively. These effects were mediated by soluble factors secreted by the adipose cells, and these factors acted directly on tumor cells. Surprisingly, tumor invasion and escape were more strongly induced by ASCs than by adipocytes. CONCLUSIONS: This work reveals that both adipocytes and ASCs accelerate the interstitial invasion and escape of human breast cancer cells, and sheds light on the link between adipose stroma and lymphatic metastasis in human breast cancer. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12195-021-00697-6.

SELECTION OF CITATIONS
SEARCH DETAIL
...