Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 5668, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36167861

ABSTRACT

Silicification of DNA origami structures increases their stability and provides chemical protection. Yet, it is unclear whether the whole DNA framework is embedded or if silica just forms an outer shell and how silicification affects the origami's internal structure. Employing in situ small-angle X-ray scattering (SAXS), we show that addition of silica precursors induces substantial condensation of the DNA origami at early reaction times by almost 10 %. Subsequently, the overall size of the silicified DNA origami increases again due to increasing silica deposition. We further identify the SAXS Porod invariant as a reliable, model-free parameter for the evaluation of the amount of silica formation at a given time. Contrast matching of the DNA double helix Lorentzian peak reveals silica growth also inside the origami. The less polar silica forming within the origami structure, replacing more than 40 % of the internal hydration water, causes a hydrophobic effect: condensation. DNA origami objects with flat surfaces show a strong tendency towards aggregation during silicification, presumably driven by the same entropic forces causing condensation. Maximally condensed origami displayed thermal stability up to 60 °C. Our studies provide insights into the silicification reaction allowing for the formulation of optimized reaction protocols.


Subject(s)
DNA , Silicon Dioxide , DNA/chemistry , Scattering, Small Angle , Silicon Dioxide/chemistry , Water , X-Ray Diffraction , X-Rays
2.
Langmuir ; 38(1): 385-393, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34969246

ABSTRACT

Photoswitchable phospholipids, or "photolipids", that harbor an azobenzene group in their lipid tails are versatile tools to manipulate and control lipid bilayer properties with light. So far, the limited ultraviolet-A/blue spectral range in which the photoisomerization of regular azobenzene operates has been a major obstacle for biophysical or photopharmaceutical applications. Here, we report on the synthesis of nano- and micrometer-sized liposomes from tetra-ortho-chloro azobenzene-substituted phosphatidylcholine (termed red-azo-PC) that undergoes photoisomerization on irradiation with tissue-penetrating red light (≥630 nm). Photoswitching strongly affects the fluidity and mechanical properties of lipid membranes, although small-angle X-ray scattering and dynamic light scattering measurements reveal only a minor influence on the overall bilayer thickness and area expansion. By controlling the photostationary state and the photoswitching efficiency of red-azo-PC for specific wavelengths, we demonstrate that shape transitions such as budding or pearling and the division of cell-sized vesicles can be achieved. These results emphasize the applicability of red-azo-PC as a nanophotonic tool in synthetic biology and for biomedical applications.


Subject(s)
Light , Phosphatidylcholines , Azo Compounds , Lipid Bilayers , Liposomes , Phospholipids
3.
J Am Chem Soc ; 143(46): 19505-19516, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34766502

ABSTRACT

Hybrid inorganic/organic heterointerfaces are promising systems for next-generation photocatalytic, photovoltaic, and chemical-sensing applications. Their performance relies strongly on the development of robust and reliable surface passivation and functionalization protocols with (sub)molecular control. The structure, stability, and chemistry of the semiconductor surface determine the functionality of the hybrid assembly. Generally, these modification schemes have to be laboriously developed to satisfy the specific chemical demands of the semiconductor surface. The implementation of a chemically independent, yet highly selective, standardized surface functionalization scheme, compatible with nanoelectronic device fabrication, is of utmost technological relevance. Here, we introduce a modular surface assembly (MSA) approach that allows the covalent anchoring of molecular transition-metal complexes with sub-nanometer precision on any solid material by combining atomic layer deposition (ALD) and selectively self-assembled monolayers of phosphonic acids. ALD, as an essential tool in semiconductor device fabrication, is used to grow conformal aluminum oxide activation coatings, down to sub-nanometer thicknesses, on silicon surfaces to enable a selective step-by-step layer assembly of rhenium(I) bipyridine tricarbonyl molecular complexes. The modular surface assembly of molecular complexes generates precisely structured spatial ensembles with strong intermolecular vibrational and electronic coupling, as demonstrated by infrared spectroscopy, photoluminescence, and X-ray photoelectron spectroscopy analysis. The structure of the MSA can be chosen to avoid electronic interactions with the semiconductor substrate to exclusively investigate the electronic interactions between the surface-immobilized molecular complexes.

4.
ACS Nano ; 14(6): 7454-7461, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32459462

ABSTRACT

The spatial organization of metal nanoparticles has become an important tool for manipulating light in nanophotonic applications. Silver nanoparticles, particularly silver nanorods, have excellent plasmonic properties but are prone to oxidation and are therefore inherently unstable in aqueous solutions and salt-containing buffers. Consequently, gold nanoparticles have often been favored, despite their inferior optical performance. Bimetallic, i.e., gold-silver core-shell nanoparticles, can resolve this issue. We present a method for synthesizing highly stable gold-silver core-shell NRs that are instantaneously functionalized with DNA, enabling chiral self-assembly on DNA origami. The silver shell gives rise to an enhancement of plasmonic properties, reflected here in strongly increased circular dichroism, as compared to pristine gold nanorods. Gold-silver nanorods are ideal candidates for plasmonic sensing with increased sensitivity as needed in pathogen RNA or antibody testing for nonlinear optics and light-funneling applications in surface enhanced Raman spectroscopy. Furthermore, the control of interparticle orientation enables the study of plasmonic phenomena, in particular, synergistic effects arising from plasmonic coupling of such bimetallic systems.


Subject(s)
Metal Nanoparticles , Nanotubes , DNA , Gold , Optical Rotation , Silver
5.
Langmuir ; 36(10): 2629-2634, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32069411

ABSTRACT

Supported lipid bilayer (SLB) membranes are key elements to mimic membrane interfaces on a planar surface. Here, we demonstrate that azobenzene photolipids (azo-PC) form fluid, homogeneous SLBs. Diffusion properties of azo-PC within SLBs were probed by fluorescence microscopy and fluorescence recovery after photobleaching. At ambient conditions, we find that the trans-to-cis isomerization causes an increase of the diffusion constant by a factor of two. Simultaneous excitation with two wavelengths and variable intensities furthermore allows to adjust the diffusion constant D continuously. X-ray reflectometry and small-angle scattering measurements reveal that membrane photoisomerization results in a bilayer thickness reduction of ∼0.4 nm (or 10%). While thermally induced back-switching is not observed, we find that the trans bilayer fluidity is increasing with higher temperatures. This change in diffusion constant is accompanied by a red-shift in the absorption spectra. Based on these results, we suggest that the reduced diffusivity of trans-azo-PC is controlled by intermolecular interactions that also give rise to H-aggregate formation in bilayer membranes.

6.
Commun Biol ; 2: 35, 2019.
Article in English | MEDLINE | ID: mdl-30701200

ABSTRACT

The temporal context of cell death decisions remains generally hidden in ensemble measurements with endpoint readouts. Here, we describe a method to extract event times from fluorescence time traces of cell death-related markers in automated live-cell imaging on single-cell arrays (LISCA) using epithelial A549 lung and Huh7 liver cancer cells as a model system. In pairwise marker combinations, we assess the chronological sequence and delay times of the events lysosomal membrane permeabilization, mitochondrial outer membrane permeabilization and oxidative burst after exposure to 58 nm amino-functionalized polystyrene nanoparticles (PS-NH2 nanoparticles). From two-dimensional event-time scatter plots we infer a lysosomal signal pathway at a low dose of nanoparticles (25 µg mL-1) for both cell lines, while at a higher dose (100 µg mL-1) a mitochondrial pathway coexists in A549 cells, but not in Huh7. In general, event-time correlations provide detailed insights into heterogeneity and interdependencies in signal transmission pathways.


Subject(s)
Cell Death , High-Throughput Screening Assays , Microscopy , Nanoparticles/adverse effects , Single-Cell Analysis , Apoptosis , Automation, Laboratory , Cell Line, Tumor , High-Throughput Screening Assays/methods , Humans , Lysosomes , Mitochondria/metabolism , Reactive Oxygen Species , Signal Transduction , Single-Cell Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...