Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 144(43): 19726-19738, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36273333

ABSTRACT

Understanding the collective behavior of ions at charged surfaces is of paramount importance for geological and electrochemical processes. Ions screen the surface charge, and interfacial fields break the centro-symmetry near the surface, which can be probed using second-order nonlinear spectroscopies. The effect of electrolyte concentration on the nonlinear optical response has been semi-quantitatively explained by mean-field models based on the Poisson-Boltzmann equation. Yet, to explain previously reported ion-specific effects on the spectroscopic response, drastic ion-specific changes in the interfacial properties, including surface acidities and dielectric permittivities, or strong ion adsorption/desorption had to be invoked. Here, we use sum-frequency generation (SFG) spectroscopy to probe the symmetry-breaking of water molecules at a charged silica surface in contact with alkaline metal chloride solutions (LiCl, NaCl, KCl, and CsCl) at various concentrations. We find that the water response varies with the cation: the SFG response is markedly enhanced for LiCl compared to CsCl. We show that within mean-field models, neither specific ion-surface interactions nor a reduced dielectric constant of water near the interface can account for the variation of spectral intensities with cation nature. Molecular dynamics simulations confirm that the decay of the electrochemical potential only weakly depends on the salt type. Instead, the effect of different salts on the optical response is indirect, through the reorganization of the interfacial water: the salt-type-dependent alignment of water directly at the interface can explain the observations.


Subject(s)
Silicon Dioxide , Water , Cations , Chlorides , Sodium Chloride
2.
Angew Chem Int Ed Engl ; 61(46): e202207017, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36006393

ABSTRACT

The dissolution of minerals in contact with water plays a crucial role in geochemistry. However, obtaining molecular insight into interfacial chemistry is challenging. Dissolution typically involves the release of ions from the surface, giving rise to a charged mineral surface. This charge affects the interfacial water arrangement, which can be investigated by surface-specific vibrational Sum Frequency Generation (v-SFG) spectroscopy. For the fluorite-water interface, recent spectroscopic studies concluded that fluoride adsorption/desorption determines the surface charge, which contrasts zeta potential measurements assigning this role to the calcium ion. By combining v-SFG spectroscopy and flow experiments with systematically suppressed dissolution, we uncover the interplay of dominant fluoride and weak calcium adsorption/desorption, resolving the controversy in the literature. We infer the calcium contribution to be orders of magnitude smaller, emphasizing the sensitivity of our approach.

4.
Nat Commun ; 12(1): 4102, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-34215740

ABSTRACT

The charging and dissolution of mineral surfaces in contact with flowing liquids are ubiquitous in nature, as most minerals in water spontaneously acquire charge and dissolve. Mineral dissolution has been studied extensively under equilibrium conditions, even though non-equilibrium phenomena are pervasive and substantially affect the mineral-water interface. Here we demonstrate using interface-specific spectroscopy that liquid flow along a calcium fluoride surface creates a reversible spatial charge gradient, with decreasing surface charge downstream of the flow. The surface charge gradient can be quantitatively accounted for by a reaction-diffusion-advection model, which reveals that the charge gradient results from a delicate interplay between diffusion, advection, dissolution, and desorption/adsorption. The underlying mechanism is expected to be valid for a wide variety of systems, including groundwater flows in nature and microfluidic systems.

5.
Langmuir ; 36(31): 9142-9152, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32686418

ABSTRACT

In this work, Langmuir monolayers based on poly(ethylene glycol)-poly(propylene glycol)-poly(ethylene glycol) (PEG-PPG-PEG) triblock copolymer were in situ stabilized at the air-water interface in the presence of a cross-linking agent, benzene-1,3,5-tricarboxaldehyde (BTC), in the aqueous subphase. The reaction takes place through acid-catalyzed acetalization between the terminal hydroxyl groups of the copolymer and aldehyde functions of the BTC molecules. Mean area per repeat unit measurements as a function of the reaction time show a significant monolayer contraction associated with an increase in its compressibility modulus. In addition, Brewster angle microscopy observations indicate the appearance of higher-density two-dimensional domains, irreversibly formed at constant surface pressure. This is also confirmed on a smaller scale by atomic force microscopy (AFM). These arguments, consistent with copolymer monolayer cross-linking in acidic medium, are supported in situ at the air-water interface by sum-frequency generation (SFG) spectroscopy. Furthermore, PEG-PPG-PEG monolayer cross-linking is not evidenced in alkaline medium, in coherence with the interfacial acid-catalyzed acetalization.

SELECTION OF CITATIONS
SEARCH DETAIL
...