Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Dairy Sci ; 105(5): 3896-3910, 2022 May.
Article in English | MEDLINE | ID: mdl-35282916

ABSTRACT

Paucilactobacillus wasatchensis can use gluconate (GLCN) as well as galactose as an energy source and because sodium GLCN can be added during salting of Cheddar cheese to reduce calcium lactate crystal formation, our primary objective was to determine if the presence of GLCN in cheese is another risk factor for unwanted gas production leading to slits in cheese. A secondary objective was to calculate the amount of CO2 produced during storage and to relate this to the amount of gas-forming substrate that was utilized. Ribose was added to promote growth of Pa. wasatchensis WDC04 (P.waWDC04) to high numbers during storage. Cheddar cheese was made with lactococcal starter culture with addition of P.waWDC04 on 3 separate occasions. After milling, the curd was divided into six 10-kg portions. To the curd was added (A) salt, or salt plus (B) 0.5% galactose + 0.5% ribose (similar to previous studies), (C) 1% sodium GLCN, (D) 1% sodium GLCN + 0.5% ribose, (E) 2% sodium GLCN, (F) 2% sodium GLCN + 0.5% ribose. A vat of cheese without added P.waWDC04 was made using the same milk and a block of cheese used as an additional control. Cheeses were cut into 900-g pieces, vacuum packaged and stored at 12°C for 16 wk. Each month the bags were examined for gas production and cheese sampled and tested for lactose, galactose and GLCN content, and microbial numbers. In the control cheese, P.waWDC04 remained undetected (i.e., <104 cfu/g), whereas in cheeses A, C, and E it increased to 107 cfu/g, and when ribose was included with salting (cheeses B, D, and F) increased to 108 cfu/g. The amount of gas (measured as headspace height or calculated as mmoles of CO2) during 16 wk storage was increased by adding P.waWDC04 into the milk, and by adding galactose or GLCN to the curd. Galactose levels in cheese B were depleted by 12 wk while no other cheeses had residual galactose. Except for cheese D, the other cheeses with GLCN added (C, E and F) showed little decline in GLCN levels until wk 12, even though gas was being produced starting at wk 4. Based on calculations of CO2 in headspace plus CO2 dissolved in cheese, galactose and GLCN added to cheese curd only accounted for about half of total gas production. It is proposed that CO2 was also produced by decarboxylation of amino acids. Although P.waWDC04 does not have all the genes for complete conversion and decarboxylation of the amino acids in cheese, this can be achieved in conjunction with starter culture lactococcal. Adding GLCN to curd can now be considered another confirmed risk factor for unwanted gas production during storage of Cheddar cheese that can lead to slits and cracks in cheese. Putative risk factors now include having a community of bacteria in cheese leading to decarboxylation of amino acids and release of CO2 as well autolysis of the starter culture that would provide a supply of ribose that can promote growth of Pa. wasatchensis.


Subject(s)
Cheese , Amino Acids , Animals , Carbon Dioxide , Cheese/analysis , Food Handling , Galactose/metabolism , Gluconates , Lactobacillus , Lactococcus/metabolism , Ribose , Sodium
2.
J Ind Microbiol Biotechnol ; 45(8): 765, 2018 08.
Article in English | MEDLINE | ID: mdl-29959644

ABSTRACT

In the published article, the co-author Abdelmoneim Abdalla's affiliation has been published incompletely. The additional affiliation is given below.

3.
J Ind Microbiol Biotechnol ; 41(3): 545-53, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24370881

ABSTRACT

Lactic acid is an important industrial chemical commonly produced through microbial fermentation. The efficiency of acid extraction is increased at or below the acid's pKa (pH 3.86), so there is interest in factors that allow for a reduced fermentation pH. We explored the role of cyclopropane synthase (Cfa) and polysorbate (Tween) 80 on acid production and membrane lipid composition in Lactobacillus casei ATCC 334 at low pH. Cells from wild-type and an ATCC 334 cfa knockout mutant were incubated in APT broth medium containing 3 % glucose plus 0.02 or 0.2 % Tween 80. The cultures were allowed to acidify the medium until it reached a target pH (4.5, 4.0, or 3.8), and then the pH was maintained by automatic addition of NH4OH. Cells were collected at the midpoint of the fermentation for membrane lipid analysis, and media samples were analyzed for lactic and acetic acids when acid production had ceased. There were no significant differences in the quantity of lactic acid produced at different pH values by wild-type or mutant cells grown in APT, but the rate of acid production was reduced as pH declined. APT supplementation with 0.2 % Tween 80 significantly increased the amount of lactic acid produced by wild-type cells at pH 3.8, and the rate of acid production was modestly improved. This effect was not observed with the cfa mutant, which indicated Cfa activity and Tween 80 supplementation were each involved in the significant increase in lactic acid yield observed with wild-type L. casei at pH 3.8.


Subject(s)
Industrial Microbiology , Lactic Acid/biosynthesis , Lacticaseibacillus casei/metabolism , Methyltransferases/genetics , Polysorbates/metabolism , Fermentation , Glucose/metabolism , Hydrogen-Ion Concentration , Lacticaseibacillus casei/enzymology , Lacticaseibacillus casei/genetics
4.
J Ind Microbiol Biotechnol ; 38(12): 1947-53, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21626209

ABSTRACT

Interest in, and use of, bifidobacteria as a probiotic delivered in functional foods has increased dramatically in recent years. As a result of their anaerobic nature, oxidative stress can pose a major challenge to maintaining viability of bifidobacteria during functional food storage. To better understand the oxidative stress response in two industrially important bifidobacteria species, we examined the response of three strains of B. longum and three strains of B. animalis subsp. lactis to hydrogen peroxide (H2O2). Each strain was exposed to a range of H2O2 concentrations (0-10 mM) to evaluate and compare intrinsic resistance to H2O2. Next, strains were tested for the presence of an inducible oxidative stress response by exposure to a sublethal H2O2 concentration for 20 or 60 min followed by challenge at a lethal H2O2 concentration. Results showed B. longum subsp. infantis ATCC 15697 had the highest level of intrinsic H2O2 resistance of all strains tested and B. animalis subsp. lactis BL-04 had the highest resistance among B. lactis strains. Inducible H2O2 resistance was detected in four strains, B. longum NCC2705, B. longum D2957, B. lactis RH-1, and B. lactis BL-04. Other strains showed either no difference or increased sensitivity to H2O2 after induction treatments. These data indicate that intrinsic and inducible resistance to hydrogen peroxide is strain specific in B. longum and B. lactis and suggest that for some strains, sublethal H2O2 treatments might help increase cell resistance to oxidative damage during production and storage of probiotic-containing foods.


Subject(s)
Bifidobacterium/drug effects , Food Storage , Hydrogen Peroxide/pharmacology , Probiotics , Animals , Bifidobacterium/physiology , Culture Media , Oxidation-Reduction , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...