Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 148(23)2021 12 01.
Article in English | MEDLINE | ID: mdl-34822715

ABSTRACT

SMAD4 regulates gene expression in response to BMP and TGFß signal transduction, and is required for diverse morphogenetic processes, but its target genes have remained largely elusive. Here, we identify the SMAD4 target genes in mouse limb buds using an epitope-tagged Smad4 allele for ChIP-seq analysis in combination with transcription profiling. This analysis shows that SMAD4 predominantly mediates BMP signal transduction during early limb bud development. Unexpectedly, the expression of cholesterol biosynthesis enzymes is precociously downregulated and intracellular cholesterol levels are reduced in Smad4-deficient limb bud mesenchymal progenitors. Most importantly, our analysis reveals a predominant function of SMAD4 in upregulating target genes in the anterior limb bud mesenchyme. Analysis of differentially expressed genes shared between Smad4- and Shh-deficient limb buds corroborates this function of SMAD4 and also reveals the repressive effect of SMAD4 on posterior genes that are upregulated in response to SHH signaling. This analysis uncovers opposing trans-regulatory inputs from SHH- and SMAD4-mediated BMP signal transduction on anterior and posterior gene expression during the digit patterning and outgrowth in early limb buds.


Subject(s)
Body Patterning , Bone Morphogenetic Proteins/metabolism , Hedgehog Proteins/metabolism , Limb Buds/embryology , Signal Transduction , Smad4 Protein/metabolism , Animals , Bone Morphogenetic Proteins/genetics , Gene Expression Regulation, Developmental , Hedgehog Proteins/genetics , Hindlimb/embryology , Mice , Mice, Transgenic , Smad4 Protein/genetics
2.
J Neurochem ; 154(5): 486-501, 2020 09.
Article in English | MEDLINE | ID: mdl-32270492

ABSTRACT

Anti-myelin-associated glycoprotein (MAG) neuropathy is a disabling autoimmune peripheral neuropathy that is caused by circulating monoclonal IgM autoantibodies directed against the human natural killer-1 (HNK-1) epitope. This carbohydrate epitope is highly expressed on adhesion molecules such as MAG, a glycoprotein present in myelinated nerves. We previously showed the therapeutic potential of the glycopolymer poly(phenyl disodium 3-O-sulfo-ß-d-glucopyranuronate)-(1→3)-ß-d-galactopyranoside (PPSGG) in selectively neutralizing anti-MAG IgM antibodies in an immunological mouse model and ex vivo with sera from anti-MAG neuropathy patients. PPSGG is composed of a biodegradable backbone that multivalently presents a mimetic of the HNK-1 epitope. In this study, we further explored the pharmacodynamic properties of the glycopolymer and its ability to inhibit the binding of anti-MAG IgM to peripheral nerves. The polymer selectively bound anti-MAG IgM autoantibodies and prevented the binding of patients' anti-MAG IgM antibodies to myelin of non-human primate sciatic nerves. Upon PPSGG treatment, neither activation nor inhibition of human and murine peripheral blood mononuclear cells nor alteration of systemic inflammatory markers was observed in mice or ex vivo in human peripheral blood mononuclear cells. Intravenous injections of PPSGG to mice immunized against the HNK-1 epitope removed anti-MAG IgM antibodies within less than 1 hr, indicating a fast and efficient mechanism of action as compared to a B-cell depletion with anti-CD20. In conclusion, these observations corroborate the therapeutic potential of PPSGG for an antigen-specific treatment of anti-MAG neuropathy. Read the Editorial Highlight for this article on page 465.


Subject(s)
Antibodies, Monoclonal/immunology , Leukocytes, Mononuclear/metabolism , Myelin Sheath/metabolism , Peripheral Nervous System Diseases/immunology , Autoantibodies/immunology , Glycoproteins/metabolism , Humans , Immunoglobulin M/immunology , Leukocytes, Mononuclear/immunology , Peripheral Nerves/immunology
3.
Chembiochem ; 3(5): 409-17, 2002 May 03.
Article in English | MEDLINE | ID: mdl-12007174

ABSTRACT

Giant vesicles have attracted much attention as possible microreactors for the conduction of enzymatic reactions in an artificial, cell-sized compartment. In this context, we demonstrated in the first part of the present work that giant vesicles formed from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine in an alternating electric field can be made more permeable to Ca(2+) ions or nucleotide triphosphates by addition of ethanol. This methodology is then applied in a second step whereby these giant vesicles are used as microreactors in which mRNA synthesis can occur. The macromolecules (the DNA template and the enzyme T7 RNA polymerase) are microinjected into a selected giant vesicle, while the substrate molecules (nucleotide triphosphates) are added from the external medium. The fact that mRNA synthesis can be detected is a further step towards our aim: the design of a microreactor that can be seen as a model for a protocell.


Subject(s)
Calcium/metabolism , Liposomes/chemistry , Phosphatidylcholines/metabolism , RNA, Messenger/biosynthesis , DNA Primers/chemistry , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , Ethanol/metabolism , Green Fluorescent Proteins , Humans , Luminescent Proteins/metabolism , Membranes, Artificial , Microinjections , Plasmids , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...