Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Cardiovasc Res ; 119(10): 1952-1968, 2023 08 19.
Article in English | MEDLINE | ID: mdl-37052172

ABSTRACT

AIMS: The circadian clock is an internal biological timer that co-ordinates physiology and gene expression with the 24-h solar day. Circadian clock perturbations have been associated to vascular dysfunctions in mammals, and a function of the circadian clock in angiogenesis has been suggested. However, the functional role of the circadian clock in endothelial cells (ECs) and in the regulation of angiogenesis is widely unexplored. METHODS AND RESULTS: Here, we used both in vivo and in vitro approaches to demonstrate that ECs possess an endogenous molecular clock and show robust circadian oscillations of core clock genes. By impairing the EC-specific function of the circadian clock transcriptional activator basic helix-loop-helix ARNT like 1 (BMAL1) in vivo, we detect angiogenesis defects in mouse neonatal vascular tissues, as well as in adult tumour angiogenic settings. We then investigate the function of circadian clock machinery in cultured EC and show evidence that BMAL and circadian locomotor output cycles protein kaput knock-down impair EC cell cycle progression. By using an RNA- and chromatin immunoprecipitation sequencing genome-wide approaches, we identified that BMAL1 binds the promoters of CCNA1 and CDK1 genes and controls their expression in ECs. CONCLUSION(S): Our findings show that EC display a robust circadian clock and that BMAL1 regulates EC physiology in both developmental and pathological contexts. Genetic alteration of BMAL1 can affect angiogenesis in vivo and in vitro settings.


Subject(s)
ARNTL Transcription Factors , Circadian Rhythm , Animals , Mice , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Circadian Rhythm/genetics , Endothelial Cells/metabolism , Promoter Regions, Genetic , Cell Cycle , Mammals/genetics , Mammals/metabolism
2.
Methods Mol Biol ; 2572: 191-202, 2023.
Article in English | MEDLINE | ID: mdl-36161418

ABSTRACT

The use of transgenic animals carrying exogenous DNA integrated in their genome is a routine in modern-day laboratories. Nowadays, the zebrafish system represents the most useful tool for transgenesis studies mainly due to easy accessibility and manipulation of the eggs, which are produced in high numbers and over a relatively short generation time. The zebrafish transgenic technology is very straightforward when coupled with angiogenesis studies allowing easy in vivo observation of the vertebrate embryonic vasculature. Here, we describe the most common technique to generate vascular-labelled transgenic zebrafish embryos and their applications to study tumor angiogenesis and visualize tumor extravasation.


Subject(s)
Neoplasms , Zebrafish , Animals , Animals, Genetically Modified , DNA , Neoplasms/blood supply , Neoplasms/genetics , Neovascularization, Pathologic/genetics , Zebrafish/genetics
3.
Cancers (Basel) ; 14(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35681715

ABSTRACT

Cancer is a leading cause of death worldwide. If left untreated, tumors tend to grow and spread uncontrolled until the patient dies. To support this growth, cancer cells need large amounts of nutrients and growth factors that are supplied and distributed to the tumor tissue by the vascular system. The aberrant tumor vasculature shows deep morphological, molecular, and metabolic differences compared to the blood vessels belonging to the non-malignant tissues (also referred as normal). A better understanding of the metabolic mechanisms driving the differences between normal and tumor vasculature will allow the designing of new drugs with a higher specificity of action and fewer side effects to target tumors and improve a patient's life expectancy. In this review, we aim to summarize the main features of tumor endothelial cells (TECs) and shed light on the critical metabolic pathways that characterize these cells. A better understanding of such mechanisms will help to design innovative therapeutic strategies in healthy and diseased angiogenesis.

4.
5.
Dev Cell ; 57(10): 1241-1256.e8, 2022 05 23.
Article in English | MEDLINE | ID: mdl-35580611

ABSTRACT

Angiogenesis, the active formation of new blood vessels from pre-existing ones, is a complex and demanding biological process that plays an important role in physiological as well as pathological settings. Recent evidence supports cell metabolism as a critical regulator of angiogenesis. However, whether and how cell metabolism regulates endothelial growth factor receptor levels and nucleotide synthesis remains elusive. We here shown in both human cell lines and mouse models that during developmental and pathological angiogenesis, endothelial cells (ECs) use glutaminolysis-derived glutamate to produce aspartate (Asp) via aspartate aminotransferase (AST/GOT). Asp leads to mTORC1 activation which, in turn, regulates endothelial translation machinery for VEGFR2 and FGFR1 synthesis. Asp-dependent mTORC1 pathway activation also regulates de novo pyrimidine synthesis in angiogenic ECs. These findings identify glutaminolysis-derived Asp as a regulator of mTORC1-dependent endothelial translation and pyrimidine synthesis. Our studies may help overcome anti-VEGF therapy resistance by targeting endothelial growth factor receptor translation.


Subject(s)
Aspartic Acid , Endothelial Cells , Mechanistic Target of Rapamycin Complex 1 , Neovascularization, Pathologic , Neovascularization, Physiologic , Animals , Aspartic Acid/metabolism , Cell Line , Endothelial Cells/metabolism , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Neovascularization, Pathologic/metabolism , Neovascularization, Physiologic/physiology , Protein Biosynthesis/physiology , Pyrimidines , Receptors, Vascular Endothelial Growth Factor/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism
6.
Nat Metab ; 4(1): 123-140, 2022 01.
Article in English | MEDLINE | ID: mdl-35102339

ABSTRACT

Vascular mural cells (vMCs) play an essential role in the development and maturation of the vasculature by promoting vessel stabilization through their interactions with endothelial cells. Whether endothelial metabolism influences mural cell recruitment and differentiation is unknown. Here, we show that the oxidative pentose phosphate pathway (oxPPP) in endothelial cells is required for establishing vMC coverage of the dorsal aorta during early vertebrate development in zebrafish and mice. We demonstrate that laminar shear stress and blood flow maintain oxPPP activity, which in turn, promotes elastin expression in blood vessels through production of ribose-5-phosphate. Elastin is both necessary and sufficient to drive vMC recruitment and maintenance when the oxPPP is active. In summary, our work demonstrates that endothelial cell metabolism regulates blood vessel maturation by controlling vascular matrix composition and vMC recruitment.


Subject(s)
Blood Vessels/cytology , Blood Vessels/metabolism , Extracellular Matrix/metabolism , Oxidative Phosphorylation , Pentose Phosphate Pathway , Animals , Biomarkers , Elastin/biosynthesis , Elastin/genetics , Endothelial Cells/metabolism , Endothelial Cells/ultrastructure , Gene Expression , Genes, Reporter , Glucose/metabolism , Hemodynamics , Mice , Mice, Knockout , Models, Biological , Oxidative Stress , Pentosephosphates/metabolism , Zebrafish
7.
J Cell Biol ; 220(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34581723

ABSTRACT

Dynamic modulation of endothelial cell-to-cell and cell-to-extracellular matrix (ECM) adhesion is essential for blood vessel patterning and functioning. Yet the molecular mechanisms involved in this process have not been completely deciphered. We identify the adhesion G protein-coupled receptor (ADGR) Latrophilin 2 (LPHN2) as a novel determinant of endothelial cell (EC) adhesion and barrier function. In cultured ECs, endogenous LPHN2 localizes at ECM contacts, signals through cAMP/Rap1, and inhibits focal adhesion (FA) formation and nuclear localization of YAP/TAZ transcriptional regulators, while promoting tight junction (TJ) assembly. ECs also express an endogenous LPHN2 ligand, fibronectin leucine-rich transmembrane 2 (FLRT2), that prevents ECM-elicited EC behaviors in an LPHN2-dependent manner. Vascular ECs of lphn2a knock-out zebrafish embryos become abnormally stretched, display a hyperactive YAP/TAZ pathway, and lack proper intercellular TJs. Consistently, blood vessels are hyperpermeable, and intravascularly injected cancer cells extravasate more easily in lphn2a null animals. Thus, LPHN2 ligands, such as FLRT2, may be therapeutically exploited to interfere with cancer metastatic dissemination.


Subject(s)
Capillary Permeability/physiology , Cell Adhesion/physiology , Endothelium, Vascular/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Receptors, G-Protein-Coupled/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Animals, Genetically Modified , COS Cells , Cell Line , Cell Nucleus/metabolism , Chlorocebus aethiops , Extracellular Matrix/metabolism , HEK293 Cells , Humans , Signal Transduction/physiology , Trans-Activators/metabolism , Zebrafish
8.
Vascul Pharmacol ; 112: 17-23, 2019 01.
Article in English | MEDLINE | ID: mdl-30423448

ABSTRACT

The role of endothelial metabolism represents a crucial element governing the formation and the differentiation of blood vessels, termed angiogenesis. Besides glycolysis and fatty acid oxidation, endothelial cells rely on specific amino acids to proliferate, migrate, and survive. In this review we focus on the metabolism of those amino acids and the intermediates that hold an established function within angiogenesis and endothelial pathophysiology. We also discuss recent work which provides a rationale for specific amino acid-restricted diets and its beneficial effects on vascular tissues, including extending the life span and preventing the development of a variety of diseases.


Subject(s)
Amino Acids/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Neovascularization, Physiologic , Animals , Diet, Protein-Restricted , Endothelium, Vascular/physiopathology , Humans , Signal Transduction , Vascular Diseases/diet therapy , Vascular Diseases/metabolism , Vascular Diseases/physiopathology
9.
Oxid Med Cell Longev ; 2017: 2697364, 2017.
Article in English | MEDLINE | ID: mdl-29085553

ABSTRACT

High levels of circulating lipoprotein constitute a risk factor for cardiovascular diseases, and in this context, the specific role of the very-low-density lipoproteins (VLDL) is poorly understood. The response of human umbilical vein endothelial cells (HUVEC) to VLDL exposure was studied, especially focusing on the pathways involved in alteration of redox homeostasis and nitric oxide (NO) bioavailability. The results obtained by the analysis of the expression level of genes implicated in the NO metabolism and oxidative stress response indicated a strong activation of inducible NO synthase (iNOS) upon 24 h exposure to VLDL, particularly if these have been preventively oxidised. Simultaneously, both mRNA and protein expression of endothelial NO synthase (eNOS) were decreased and its phosphorylation pattern, at the key residues Tyr495 and Ser1177, strongly suggested the occurrence of the eNOS uncoupling. The results are consistent with the observed increased production of nitrites and nitrates (NOx), reactive oxygen species (ROS), 3-nitrotyrosine (3-NT), and, at mitochondrial level, a deficit in mitochondrial O2 consumption. Altogether, these data suggest that the VLDL, particularly if oxidised, when allowed to persist in contact with endothelial cells, strongly alter NO bioavailability, affecting redox homeostasis and mitochondrial function.


Subject(s)
Human Umbilical Vein Endothelial Cells/metabolism , Lipoproteins, VLDL/metabolism , Nitric Oxide/metabolism , Homeostasis , Humans , Reactive Oxygen Species , Signal Transduction
10.
Carbohydr Polym ; 144: 362-70, 2016 Jun 25.
Article in English | MEDLINE | ID: mdl-27083828

ABSTRACT

Cardiovascular disease is the largest single cause of morbid-mortality in the world. However, there is still no pharmaceutical treatment that directly targets the blood vessel wall instead of just controlling the risk factors. Here, we produced polyelectrolyte complexes (PECs) by a simple and reproducible polyelectrolyte complexation method between low molecular mass dermatan sulfate (polyanionic polysaccharide) and chitosan (polycationic polysaccharide), and evaluated the cellular uptake by vascular endothelial cells. The composition and the composition homogeneity of PECs were confirmed by (13)C-CP-MAS spectroscopy and by polyacrylamide gel electrophoresis, respectively. The hydrodynamic radius, determined by dynamic light scattering, was 729±11nm. PECs were not cytotoxic for a murine heart endothelium-derived cell line. Fluorescent confocal microscopy showed the specific uptake of fluorescently-labeled PECs by endothelial cells when they were cultured alone or in the presence of macrophages. Overall, these findings confirmed the potential of these PECs for targeting different agents to the vessel wall in the prevention, diagnosis, and therapy of vascular disease.


Subject(s)
Chitosan/chemistry , Dermatan Sulfate/chemistry , Polyelectrolytes/chemistry , Vascular Diseases/diagnosis , Vascular Diseases/drug therapy , Animals , Biological Transport , Endothelial Cells/metabolism , Mice , Molecular Weight , Polyelectrolytes/metabolism , Polyelectrolytes/therapeutic use , RAW 264.7 Cells , Vascular Diseases/prevention & control
11.
Int J Exp Pathol ; 95(3): 181-90, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24602133

ABSTRACT

Proteoglycan accumulation within the arterial intima has been implicated in atherosclerosis progression in humans. Nevertheless, hypercholesterolaemia is unable to induce intimal thickening and atheroma plaque development in rats. The study was performed to analyse proteoglycans modifications in rats fed with a high-cholesterol diet to understand whether vascular wall remodelling protects against lesions. Sections obtained from rat aortas showed normal features, in intimal-to-media ratio and lipid accumulation. However, focal endothelial hyperplasia and neo-intima rearrangement were observed in high-cholesterol animals. Besides, hypercholesterolaemia induced an inflammatory microenviroment. We determined the expression of different proteoglycans from aortic cells by Western blot and observed a diminished production of decorin and biglycan in high-cholesterol animals compared with control (P < 0.01 and P < 0.05, respectively). Versican was increased in high-cholesterol animals (P < 0.05), whereas perlecan production showed no differences. No modification of the total content of glycosaminoglycans (GAGs) was found between the two experimental groups. In contrast, the chondroitin sulphate/dermatan sulphate ratio was increased in the high-cholesterol group as compared to the control (0.56 and 0.34, respectively). Structural alterations in the disaccharide composition of galactosaminoglycans were also detected by HPLC, as the ratio of 6-sulphate to 4-sulphate disaccharides was increased in high-cholesterol animals (P < 0.05). Our results suggest that attenuation of decorin and biglycan expression might be an effective strategy to inhibit the first step in atherogenesis, although specific GAG structural modification associated with the development of vascular disease took place. Results emphasize the potential application of therapies based on vascular matrix remodelling to treat atherosclerosis.


Subject(s)
Atherosclerosis/prevention & control , Chondroitin Sulfate Proteoglycans/metabolism , Dermatan Sulfate/metabolism , Extracellular Matrix/metabolism , Gene Expression Regulation , Hypercholesterolemia/physiopathology , Plaque, Atherosclerotic/prevention & control , Animals , Aorta/cytology , Aorta/metabolism , Atherosclerosis/physiopathology , Cholesterol/blood , Chondroitin Sulfate Proteoglycans/chemistry , Dermatan Sulfate/chemistry , Diet, Atherogenic/adverse effects , Disease Models, Animal , Glycosaminoglycans/chemistry , Goats , Humans , Hypercholesterolemia/metabolism , Lipids/blood , Male , Rabbits , Rats , Rats, Wistar , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
12.
Histol Histopathol ; 26(4): 481-90, 2011 04.
Article in English | MEDLINE | ID: mdl-21360441

ABSTRACT

Decorin and biglycan proteoglycans play important roles in the organization of the extracellular matrix, and in the regulation of cell adhesion and migration. Given morphological and functional endothelial heterogeneity, information is needed regarding whether endothelial cells (ECs) from different vascular beds possess different profiles of proteoglycan constituents of the basement membranes. Here, we report that endothelia from different murine organs and EC lines derived thereof produce and secrete different patterns of proteoglycans. A faint colocalization between decorin and PECAM/CD31 was found on tissue sections from mouse heart, lung and kidney by immunofluorescence. Three EC lines derived from these organs produced decorin (100-kDa) and its core protein (45-kDa). Extracellular decorin recognition in culture supernatant was only possible after chondroitin lyase digestion suggesting that the core protein of secreted proteoglycan is more encrypted by glycosaminoglycans than the intracellular one. Heart and lung ECs were able to produce and release decorin. Kidney ECs synthesized the proteoglycan and its core protein but no secretion was detected in culture supernatants. Although biglycan production was recorded in all EC lines, secretion was almost undetectable, consistent with immunofluorescence results. In addition, no biglycan secretion was detected after EC growth supplement treatment, indicating that biglycan is synthesized, secreted and quickly degraded extracellularly by metalloproteinase-2. Low molecular-mass dermatan sulfate was the predominant glycosaminoglycan identified bound to the core protein. ECs from different vascular beds, with differences in morphology, physiology and cell biology show differences in the proteoglycan profile, extending their heterogeneity to potential differences in cell migration capacities.


Subject(s)
Biglycan/metabolism , Decorin/metabolism , Endothelial Cells/metabolism , Animals , Biomarkers/metabolism , Blotting, Western , Cell Line , Culture Media, Conditioned/chemistry , Culture Media, Conditioned/metabolism , Dermatan Sulfate/metabolism , Endothelial Cells/cytology , Extracellular Matrix/metabolism , Kidney/cytology , Kidney/metabolism , Lung/cytology , Lung/metabolism , Male , Mice , Mice, Inbred BALB C , Myocardium/cytology , Myocardium/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/metabolism
13.
Thromb Res ; 125(5): e240-5, 2010 May.
Article in English | MEDLINE | ID: mdl-20035973

ABSTRACT

INTRODUCTION: Low-molecular-weight heparin is used clinically for the prevention of pregnancy complications associated with prothrombotic disorders, particularly anti-phospholipid syndrome. Nevertheless, recent studies have suggested that heparin may exert direct effects on the placental trophoblast, independently of its anticoagulant activity. In addition, heparin prevents complement activation in vivo and protects mice from pregnancy complications. MATERIALS AND METHODS: The inhibition of the classical complement activation pathway by heparin was analyzed by means of in vitro assays and in pregnant women receiving prophylaxis with therapeutic doses (40 mg/day) of subcutaneous low molecular weight heparin by haemolysis of antibody-sensitized sheep erythrocytes (CH(50) assay). RESULTS: The specific interaction between low-molecular-weight heparin and the C1q subunit of the C1 complex of the complement cascade allowed the isolation of a small subpopulation of heparin ( 8.03+/-1.20 microg %), with an anti-activated factor X activity more than four times greater than the starting material. This subpopulation could be responsible for the in vitro inhibition of the classical complement activation pathway evaluated by the total haemolysis of antibody-sensitized sheep erythrocytes. About 60 microg/ml of low molecular weight heparin was needed to achieve 50% of haemolysis. The detection of the classical complement pathway inhibition in pregnant women treated with heparin required a first activation with aggregated human IgG. CONCLUSIONS: We concluded that the interaction between low-molecular-weight heparin and C1q could be relevant not only in the complement-dependent, but also in the complement-independent inflammation mechanisms responsible for the prevention of pregnancy loss.


Subject(s)
Complement Pathway, Classical/drug effects , Complement Pathway, Classical/immunology , Heparin, Low-Molecular-Weight/administration & dosage , Adolescent , Adult , Dose-Response Relationship, Drug , Female , Humans , Pregnancy , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...