Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chimia (Aarau) ; 77(12): 816-826, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38131404

ABSTRACT

The article discusses the production of platform chemicals from various biological sources, including glycerol, lignin, cellulose, bio-oils, and sea products. It presents the results of catalytic and downstream processes involved in the conversion of these biomass-derived feedstocks. The experimental approaches are complemented by numerical descriptions, ranging from density functional theory (DFT) calculations to kinetic modellingof the experimental data. This multi-scale modelling approach helps to understand the underlying mechanisms and optimize the production of platform chemicals from renewable resources.

2.
Int J Biol Macromol ; 252: 126433, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37604416

ABSTRACT

Biocomposite films from renewable sources are seen to be viable candidates as sustainable, zero-waste packaging materials. In this study, biocomposites films using chitosan and alginate as matrices, and pristine or acetylated cellulose nanocrystals (CNCs) as reinforcement agents, were fabricated, thoroughly characterized in terms of structure (with ATR-FTIR and XRD), morphology (SEM), thermal stability (TGA coupled with FTIR), water content and solubility and mechanical properties and subjected to controlled biological degradation in aqueous environment with added activated sludge. Biodegradation activity was followed through respirometry by measurement of change in partial O2 pressure using OxiTop® system. While the initial rate of biodegradation is higher in chitosan-based films with incorporated CNCs (both pristine and modified) compared to any other tested biocomposites, it was observed that chitosan-based films are not completely degradable in activated sludge medium, whereas alginate-based films reached complete biodegradation in 107 h to 112 h. Additional study of the aqueous medium with in situ FTIR during biodegradation offered an insight into biodegradation mechanisms. Use of advanced statistical methods indicated that selection of material (ALG vs CH) has the highest influence on biodegradability, followed by solubility of the material and its thermal stability.


Subject(s)
Chitosan , Nanoparticles , Cellulose/chemistry , Chitosan/chemistry , Alginates , Sewage , Water , Nanoparticles/chemistry
4.
ACS Appl Mater Interfaces ; 15(26): 31643-31651, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37350261

ABSTRACT

The development of sensitive, selective, and reliable gaseous hydrogen peroxide (H2O2) sensors operating at room temperature still represents a remaining challenge. In this work, we have investigated and combined the advantageous properties of a two-dimensional Ti3C2Tx MXene material that exhibits a large specific surface area and high surface activity, with favorable conducting and stabilizing properties of chitosan. The MXene-chitosan membrane was deposited on the ferrocyanide-modified screen-printed working carbon electrode, followed by applying poly(acrylic acid) as an electrolyte and accumulation medium for gaseous H2O2. The sensor showed highly sensitive and selective electroanalytical performance for detecting trace concentrations of gaseous H2O2 with a very low detection limit of 4 µg m-3 (4 ppbv), linear response in the studied concentration range of 0.5-30.0 mg m-3, and good reproducibility with an RSD of 1.3%. The applicability of the sensor was demonstrated by point-of-interest detection of gaseous H2O2 during the real hair bleaching process with a 9 and 12% H2O2 solution.

5.
Polymers (Basel) ; 15(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37050280

ABSTRACT

Cellulose nanocrystals (CNCs) were acetylated to the various parametrised degrees of substitution (DS), determined through attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and incorporated into alginate (ALG) and chitosan (CH) film-forming solutions. An investigation of morphology with scanning electron microscopy (SEM) revealed increased chemical compatibility with the CH matrix after acetylation, producing a smooth surface layer, while ALG mixed better with pristine CNCs. The ATR-FTIR analysis of films demonstrated inter-diffusional structural changes upon the integration of pristine/modified CNCs. Films were evaluated in terms of water contact angle (WCA), which decreased upon CNC addition in either of the biocomposite types. The H2O barrier assessed through applicative vapour transmission (WVT) rate increased with the CNC esterification in CH, but was not influenced in ALG. To evaluate the relationship between environmental humidity and mechanical properties, conditioning was applied for 48 h under controlled relative humidity (33%, 54% and 75%) prior to the evaluation of the mechanical properties and moisture content. It was observed that tensile strength was highest upon specimens being dry (25 ± 3 MPa for ALG, reinforced with neat CNCs, or 16 ± 2 MPa in the CH with CNCs, reacting to the highest DS), lowering with dewing, and the elongation at break exhibited the opposite. It is worth noting that the modification of CNCs improved the best base benchmark stress-strain performance. Lastly, (thermal) stability was assessed by means of the thermogravimetric analysis (TGA) technique, suggesting a slight improvement.

6.
Antioxidants (Basel) ; 11(6)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35740097

ABSTRACT

A 70% ethanol(aq) extract of the rhizome bark of the invasive alien plant species Japanese knotweed (JKRB) with potent (in the range of vitamin C) and stable antioxidant activity was incorporated in 1% w/v into a chitosan biofoil, which was then characterized on a lab-scale. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay confirmed the antioxidant activity of the JKRB biofoil upon contact with the food simulants A, B, C, and D1 (measured half-maximal inhibitory concentrations-IC50) and supported the Folin-Ciocalteu assay result. The migration of the antioxidant marker, (-)-epicatechin, into all food simulants (A, B, C, D1, D2, and E) was quantified using liquid chromatography hyphenated to mass spectrometry (LC-MS). Calculations showed that 1 cm2 of JKRB biofoil provided antioxidant activity to ~0.5 L of liquid food upon 1 h of contact. The JKRB biofoil demonstrated antimicrobial activity against Gram-positive bacteria. The incorporation of JKRB into the chitosan biofoil resulted in improved tensile strength from 0.75 MPa to 1.81 MPa, while elongation decreased to 28%. JKRB biofoil's lower moisture content compared to chitosan biofoil was attributed to the formation of hydrogen bonds between chitosan biofoil and JKRB compounds, further confirmed with attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The JKRB biofoil completely degraded in compost in 11 days. The future upscaled production of JKRB biofoil from biowastes for active packaging may support the fights against plastic waste, food waste, and the invasiveness of Japanese knotweed, while greatly contributing to the so-called 'zero-waste' strategy and the reduction in greenhouse gas emissions.

7.
Polymers (Basel) ; 13(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34372125

ABSTRACT

The aim of the study was to characterize and compare films made of cellulose nanocrystals (CNC), nano-fibrils (CNF), and bacterial nanocellulose (BNC) in combination with chitosan and alginate in terms of applicability for potential food packaging applications. In total, 25 different formulations were made and evaluated, and seven biopolymer films with the best mechanical performance (tensile strength, strain)-alginate, alginate with 5% CNC, chitosan, chitosan with 3% CNC, BNC with and without glycerol, and CNF with glycerol-were selected and investigated regarding morphology (SEM), density, contact angle, surface energy, water absorption, and oxygen and water barrier properties. Studies revealed that polysaccharide-based films with added CNC are the most suitable for packaging purposes, and better dispersing of nanocellulose in chitosan than in alginate was observed. Results showed an increase in hydrophobicity (increase of contact angle and reduced moisture absorption) of chitosan and alginate films with the addition of CNC, and chitosan with 3% CNC had the highest contact angle, 108 ± 2, and 15% lower moisture absorption compared to pure chitosan. Overall, the ability of nanocellulose additives to preserve the structure and function of chitosan and alginate materials in a humid environment was convincingly demonstrated. Barrier properties were improved by combining the biopolymers, and water vapor transmission rate (WVTR) was reduced by 15-45% and oxygen permeability (OTR) up to 45% by adding nanocellulose compared to single biopolymer formulations. It was concluded that with a good oxygen barrier, a water barrier that is comparable to PLA, and good mechanical properties, biopolymer films would be a good alternative to conventional plastic packaging used for ready-to-eat foods with short storage time.

8.
Carbohydr Polym ; 259: 117742, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33674002

ABSTRACT

Nanoscale-interfaced cellulose nanomaterials are extracted from polysaccharides, which are widely available in nature, biocompatible and biodegradable. Moreover, the latter have a potential to be recycled, upcycled, and formulate therefore a great theoretical predisposition to be used in a number of applications. Nanocrystals, nano-fibrils and nanofibers possess reactive functional groups that enable hydrophobic surface modifications. Analysed literature data, concerning mechanisms, pathways and kinetics, was screened, compared and assessed with regard to the demand of a catalyst, different measurement conditions and added molecule reactions. There is presently only a scarce technique description for carbonOH bond functionalization, considering the elementary chemical steps, sequences and intermediates of these (non)catalytic transformations. The overview of the prevailing basic research together with in silico modelling approach methodology gives us a deeper physical understanding of processes. Finally, to further highlight the applicability of such raw materials, the review of the development in several multidisciplinary fields was presented.

9.
Int J Biol Macromol ; 160: 971-978, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32464211

ABSTRACT

An active chitosan-based film, blended with the hydrolysable tannin-rich extract obtained from fibrous chestnut wood (Castanea sativa Mill.), underwent a simultaneous engineering optimization in terms of measured moisture content (MC), tensile strength (TS), elongation at break (EB), and total phenolic content (TPC). The optimal product formulation for a homogeneous film-forming solution was sought by designing an empirical Box-Behnken model simulation, based on three independent variables: the concentrations of chitosan (1.5-2.0% (w/v)), extracted powder-form chestnut extract (0.5-1.0% (w/v)) and plasticizer glycerol (30.0-90.0% (w/w); determined per mass of polysaccharide). Obtained linear (MC), quadratic (TS or EB), and two-factor interaction (TPC) sets were found to be significant (p < 0.05), to fit well with characteristic experimental data (0.969 < R2 < 0.992), and could be considered predictive. Although all system parameters were influential, the level of polyol played a vital continuous role in defining EB, MC, and TS, while the variation of the chestnut extract caused an expected connected change in affecting TPC. The component relationship formula of chemical mixture fractions (1.93% (w/v) of chitosan, 0.97% (w/v) chestnut extract and 30.0% (w/w) of glycerol) yielded the final applicable material of adequate physico-mechanical properties (MC = 17.0%, TS = 16.7 MPa, EB = 10.4%, and TPC = 19.4 mgGAE gfilm-1). Further statistical validation of the concept revealed a sufficient specific accuracy with the computed maximal absolute residual error up to 22.2%. Herein-proposed design methodology can thus be translated to smart packaging fabrication generally.


Subject(s)
Biocompatible Materials/chemistry , Chitosan/chemistry , Food Packaging , Membranes, Artificial , Algorithms , Chemical Phenomena , Food Packaging/methods , Mechanical Phenomena , Models, Theoretical , Molecular Weight , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...