Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Vis Comput Graph ; 22(10): 2289-2299, 2016 10.
Article in English | MEDLINE | ID: mdl-26685249

ABSTRACT

Advances in computational power now enable domain scientists to address conceptual and parametric uncertainty by running simulations multiple times in order to sufficiently sample the uncertain input space. While this approach helps address conceptual and parametric uncertainties, the ensemble datasets produced by this technique present a special challenge to visualization researchers as the ensemble dataset records a distribution of possible values for each location in the domain. Contemporary visualization approaches that rely solely on summary statistics (e.g., mean and variance) cannot convey the detailed information encoded in ensemble distributions that are paramount to ensemble analysis; summary statistics provide no information about modality classification and modality persistence. To address this problem, we propose a novel technique that classifies high-variance locations based on the modality of the distribution of ensemble predictions. Additionally, we develop a set of confidence metrics to inform the end-user of the quality of fit between the distribution at a given location and its assigned class. Finally, for the special application of evaluating the stability of bimodal regions, we develop local and regional metrics.

2.
IEEE Trans Vis Comput Graph ; 22(10): 2331-2342, 2016 10.
Article in English | MEDLINE | ID: mdl-26685253

ABSTRACT

Visualization and analysis techniques play a key role in the discovery of relevant features in ensemble data. Trends, in the form of persisting commonalities or differences in time-varying ensemble datasets, constitute one of the most expressive feature types in ensemble analysis. We develop a flow-graph representation as the core of a system designed for the visual analysis of trends in time-varying ensembles. In our interactive analysis framework, this graph is linked to a representation of ensemble parameter-space and the ensemble itself. This facilitates a detailed examination of trends and their correlations to properties of input-space. We demonstrate the utility of the proposed trends analysis framework in several benchmark data sets, highlighting its capability to support goal-driven design of time-varying simulations.

3.
IEEE Trans Vis Comput Graph ; 21(12): 1403-14, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26529461

ABSTRACT

Effective display and visual analysis of complex 3D data is a challenging task. Occlusions, overlaps, and projective distortions-as frequently caused by typical 3D rendering techniques-can be major obstacles to unambiguous and robust data analysis. Slicing planes are a ubiquitous tool to resolve several of these issues. They act as simple clipping geometry to provide clear cut-away views of the data. We propose to enhance the visualization and analysis process by providing methods for automatic placement of such slicing planes based on local optimization of gradient vector flow. The final obtained slicing planes maximize the total amount of information displayed with respect to a pre-specified importance function. We demonstrate how such automated slicing plane placement is able to support and enrich 3D data visualization and analysis in multiple scenarios, such as volume or surface rendering, and evaluate its performance in several benchmark data sets.

4.
IEEE Trans Vis Comput Graph ; 21(1): 68-80, 2015 Jan.
Article in English | MEDLINE | ID: mdl-26357022

ABSTRACT

Particle tracing in time-varying flow fields is traditionally performed by numerical integration of the underlying vector field. This procedure can become computationally expensive, especially in scattered, particle-based flow fields, which complicate interpolation due to the lack of an explicit neighborhood structure. If such a particle-based flow field allows for the identification of consecutive particle positions, an alternative approach to particle tracing can be employed: we substitute repeated numerical integration of vector data by geometric interpolation in the highly dynamic particle system as defined by the particle-based simulation. To allow for efficient and accurate location and interpolation of changing particle neighborhoods, we develop a modified k-d tree representation that is capable of creating a dynamic partitioning of even highly compressible data sets with strongly varying particle densities. With this representation we are able to efficiently perform pathline computation by identifying, tracking, and updating an enclosing, dynamic particle neighborhood as particles move overtime. We investigate and evaluate the complexity, accuracy, and robustness of this interpolation-based alternative approach to trajectory generation in compressible and incompressible particle systems generated by simulation techniques such as Smoothed Particle Hydrodynamics (SPH).

5.
IEEE Trans Vis Comput Graph ; 19(12): 2703-12, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24051837

ABSTRACT

Numerical ensemble forecasting is a powerful tool that drives many risk analysis efforts and decision making tasks. These ensembles are composed of individual simulations that each uniquely model a possible outcome for a common event of interest: e.g., the direction and force of a hurricane, or the path of travel and mortality rate of a pandemic. This paper presents a new visual strategy to help quantify and characterize a numerical ensemble's predictive uncertainty: i.e., the ability for ensemble constituents to accurately and consistently predict an event of interest based on ground truth observations. Our strategy employs a Bayesian framework to first construct a statistical aggregate from the ensemble. We extend the information obtained from the aggregate with a visualization strategy that characterizes predictive uncertainty at two levels: at a global level, which assesses the ensemble as a whole, as well as a local level, which examines each of the ensemble's constituents. Through this approach, modelers are able to better assess the predictive strengths and weaknesses of the ensemble as a whole, as well as individual models. We apply our method to two datasets to demonstrate its broad applicability.


Subject(s)
Algorithms , Bayes Theorem , Computer Graphics , Data Interpretation, Statistical , Models, Statistical , Pattern Recognition, Automated/methods , User-Computer Interface , Computer Simulation , Reproducibility of Results , Sensitivity and Specificity
6.
IEEE Trans Vis Comput Graph ; 19(12): 2743-52, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24051841

ABSTRACT

Sets of simulation runs based on parameter and model variation, so-called ensembles, are increasingly used to model physical behaviors whose parameter space is too large or complex to be explored automatically. Visualization plays a key role in conveying important properties in ensembles, such as the degree to which members of the ensemble agree or disagree in their behavior. For ensembles of time-varying vector fields, there are numerous challenges for providing an expressive comparative visualization, among which is the requirement to relate the effect of individual flow divergence to joint transport characteristics of the ensemble. Yet, techniques developed for scalar ensembles are of little use in this context, as the notion of transport induced by a vector field cannot be modeled using such tools. We develop a Lagrangian framework for the comparison of flow fields in an ensemble. Our techniques evaluate individual and joint transport variance and introduce a classification space that facilitates incorporation of these properties into a common ensemble visualization. Variances of Lagrangian neighborhoods are computed using pathline integration and Principal Components Analysis. This allows for an inclusion of uncertainty measurements into the visualization and analysis approach. Our results demonstrate the usefulness and expressiveness of the presented method on several practical examples.


Subject(s)
Computer Graphics , Imaging, Three-Dimensional/methods , Models, Theoretical , Numerical Analysis, Computer-Assisted , Rheology/methods , Subtraction Technique , User-Computer Interface , Algorithms , Models, Statistical
7.
IEEE Trans Vis Comput Graph ; 19(10): 1687-99, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23929848

ABSTRACT

Multifluid simulations often create volume fraction data, representing fluid volumes per region or cell of a fluid data set. Accurate and visually realistic extraction of fluid boundaries is a challenging and essential task for efficient analysis of multifluid data. In this work, we present a new material interface reconstruction method for such volume fraction data. Within each cell of the data set, our method utilizes a gradient field approximation based on trilinearly blended Coons-patches to generate a volume fraction function, representing the change in volume fractions over the cells. A continuously varying isovalue field is applied to this function to produce a smooth interface that preserves the given volume fractions well. Further, the method allows user-controlled balance between volume accuracy and physical plausibility of the interface. The method works on two- and three-dimensional Cartesian grids, and handles multiple materials. Calculations are performed locally and utilize only the one-ring of cells surrounding a given cell, allowing visualizations of the material interfaces to be easily generated on a GPU or in a large-scale distributed parallel environment. Our results demonstrate the robustness, accuracy, and flexibility of the developed algorithms.

8.
IEEE Trans Vis Comput Graph ; 18(2): 270-82, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22156292

ABSTRACT

Crease surfaces describe extremal structures of 3D scalar fields. We present a new region-growing-based approach to the meshless extraction of adaptive nonmanifold valley and ridge surfaces that overcomes limitations of previous approaches by decoupling point seeding and triangulation of the surface. Our method is capable of extracting valley surface skeletons as connected minimum structures. As our algorithm is inherently mesh-free and curvature adaptive, it is suitable for surface construction in fields with an arbitrary neighborhood structure. As an application for insightful visualization with valley surfaces, we choose a low frequency acoustics simulation. We use our valley surface construction approach to visualize the resulting complex-valued scalar pressure field for arbitrary frequencies to identify regions of sound cancellation. This provides an expressive visualization of the topology of wave node and antinode structures in simulated acoustics.

SELECTION OF CITATIONS
SEARCH DETAIL
...