Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Biophys J ; 114(2): 278-282, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29248150

ABSTRACT

Single-molecule methods provide direct measurements of macromolecular dynamics, but are limited by the number of degrees of freedom that can be followed at one time. High-resolution rotor bead tracking (RBT) measures DNA torque, twist, and extension, and can be used to characterize the structural dynamics of DNA and diverse nucleoprotein complexes. Here, we extend RBT to enable simultaneous monitoring of additional degrees of freedom. Fluorescence-RBT (FluoRBT) combines magnetic tweezers, infrared evanescent scattering, and single-molecule FRET imaging, providing real-time multiparameter measurements of complex molecular processes. We demonstrate the capabilities of FluoRBT by conducting simultaneous measurements of extension and FRET during opening and closing of a DNA hairpin under tension, and by observing simultaneous changes in FRET and torque during a transition between right-handed B-form and left-handed Z-form DNA under controlled supercoiling. We discover unanticipated continuous changes in FRET with applied torque, and also show how FluoRBT can facilitate high-resolution FRET measurements of molecular states, by using a mechanical signal as an independent temporal reference for aligning and averaging noisy fluorescence data. By combining mechanical measurements of global DNA deformations with FRET measurements of local conformational changes, FluoRBT will enable multidimensional investigations of systems ranging from DNA structures to large macromolecular machines.


Subject(s)
DNA , Fluorescence Resonance Energy Transfer , Materials Testing/instrumentation , Torque
2.
Nat Methods ; 11(4): 456-62, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24562422

ABSTRACT

Single-molecule measurements of DNA twist and extension have been used to reveal physical properties of the double helix and to characterize structural dynamics and mechanochemistry in nucleoprotein complexes. However, the spatiotemporal resolution of twist measurements has been limited by the use of angular probes with high rotational drag, which prevents detection of short-lived intermediates or small angular steps. We introduce gold rotor bead tracking (AuRBT), which yields >100× improvement in time resolution over previous techniques. AuRBT employs gold nanoparticles as bright low-drag rotational and extensional probes, which are monitored by instrumentation that combines magnetic tweezers with objective-side evanescent darkfield microscopy. Our analysis of high-speed structural dynamics of DNA gyrase using AuRBT revealed an unanticipated transient intermediate. AuRBT also enables direct measurements of DNA torque with >50× shorter integration times than previous techniques; we demonstrated high-resolution torque spectroscopy by mapping the conformational landscape of a Z-forming DNA sequence.


Subject(s)
DNA/chemistry , Gold , Metal Nanoparticles/chemistry , Nucleic Acid Conformation , DNA Gyrase , Magnetics , Nanotechnology , Torque
3.
Phys Rev Lett ; 110(17): 178103, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23679785

ABSTRACT

Changes in global DNA linking number can be accommodated by localized changes in helical structure. We have used single-molecule torque measurements to investigate sequence-specific strand separation and Z-DNA formation. By controlling the boundary conditions at the edges of sequences of interest, we have confirmed theoretical predictions of distinctive boundary-dependent backbending patterns in torque-twist relationships. Abrupt torque jumps are associated with the formation and collapse of DNA bubbles, permitting direct observations of DNA breathing dynamics.


Subject(s)
Base Pairing , Spectrum Analysis/methods , DNA, Z-Form/chemistry , Nucleic Acid Conformation , Torque , Trinucleotide Repeats
4.
Curr Opin Struct Biol ; 22(3): 304-12, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22658779

ABSTRACT

Over the past two decades, measurements on individual stretched and twisted DNA molecules have helped define the basic elastic properties of the double helix and enabled real-time functional assays of DNA-associated molecular machines. Recently, new magnetic tweezers approaches for simultaneously measuring freely fluctuating twist and extension have begun to shed light on the structural dynamics of large nucleoprotein complexes. Related technical advances have facilitated direct measurements of DNA torque, contributing to a better understanding of abrupt structural transitions in mechanically stressed DNA. The new measurements have also been exploited in studies that hint at a developing synergistic relationship between single-molecule manipulation and structural DNA nanotechnology.


Subject(s)
DNA/chemistry , Macromolecular Substances/chemistry , Nanotechnology , Nucleic Acid Conformation , Nucleoproteins/chemistry , Protein Binding , Torque
5.
Proc Natl Acad Sci U S A ; 109(16): 6106-11, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22474350

ABSTRACT

B-DNA becomes unstable under superhelical stress and is able to adopt a wide range of alternative conformations including strand-separated DNA and Z-DNA. Localized sequence-dependent structural transitions are important for the regulation of biological processes such as DNA replication and transcription. To directly probe the effect of sequence on structural transitions driven by torque, we have measured the torsional response of a panel of DNA sequences using single molecule assays that employ nanosphere rotational probes to achieve high torque resolution. The responses of Z-forming d(pGpC)(n) sequences match our predictions based on a theoretical treatment of cooperative transitions in helical polymers. "Bubble" templates containing 50-100 bp mismatch regions show cooperative structural transitions similar to B-DNA, although less torque is required to disrupt strand-strand interactions. Our mechanical measurements, including direct characterization of the torsional rigidity of strand-separated DNA, establish a framework for quantitative predictions of the complex torsional response of arbitrary sequences in their biological context.


Subject(s)
Algorithms , DNA, Superhelical/chemistry , DNA/chemistry , Torque , Base Sequence , DNA/genetics , DNA, B-Form/chemistry , DNA, B-Form/genetics , DNA, Superhelical/genetics , DNA, Z-Form/chemistry , DNA, Z-Form/genetics , Models, Chemical , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , Thermodynamics
6.
Cell ; 143(2): 225-37, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-20946981

ABSTRACT

Sequence-dependent recognition of dsDNA-binding proteins is well understood, yet sequence-specific recognition of dsRNA by proteins remains largely unknown, despite their importance in RNA maturation pathways. Adenosine deaminases that act on RNA (ADARs) recode genomic information by the site-selective deamination of adenosine. Here, we report the solution structure of the ADAR2 double-stranded RNA-binding motifs (dsRBMs) bound to a stem-loop pre-mRNA encoding the R/G editing site of GluR-2. The structure provides a molecular basis for how dsRBMs recognize the shape, and also more surprisingly, the sequence of the dsRNA. The unexpected direct readout of the RNA primary sequence by dsRBMs is achieved via the minor groove of the dsRNA and this recognition is critical for both editing and binding affinity at the R/G site of GluR-2. More generally, our findings suggest a solution to the sequence-specific paradox faced by many dsRBM-containing proteins that are involved in post-transcriptional regulation of gene expression.


Subject(s)
Adenosine Deaminase/chemistry , RNA, Double-Stranded/chemistry , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Amino Acid Sequence , Animals , Cell Line , Humans , Mice , Models, Molecular , Molecular Sequence Data , Mutation , Nuclear Magnetic Resonance, Biomolecular , RNA Precursors/metabolism , RNA, Double-Stranded/metabolism , RNA-Binding Proteins , Rats , Receptors, AMPA/genetics , Sequence Alignment
7.
J Mol Biol ; 396(3): 732-46, 2010 Feb 26.
Article in English | MEDLINE | ID: mdl-20004205

ABSTRACT

The sterile alpha motif (SAM) domain of VTS1p, a posttranscriptional gene regulator, belongs to a family of SAM domains conserved from yeast to humans. Even though SAM domains were originally classified as protein-protein interaction domains, recently, it was shown that the yeast VTS1p-SAM and the SAM domain of its Drosophila homolog Smaug can specifically recognize RNA hairpins termed Smaug recognition element (SRE). Structural studies of the SRE-RNA complex of VTS1p-SAM revealed that the SAM domain primarily recognizes the shape of the RNA fold induced by the Watson-Crick base-pairing in the RNA pentaloop. Only the central G nucleotide is specifically recognized. The VTS1p-SAM domain recognizes SRE-RNAs with a CNGGN pentaloop where N is any nucleotide. The C1-G4 base pair in the wild type can be replaced by any pair of nucleotides that can form base pairs even though the binding affinity is greatest with a pyrimidine in position 1 and a purine in position 4. The interaction thus combines elements of sequence-specific and non-sequence-specific recognitions. The lack of structural rearrangements in either partner following binding is rather intriguing, suggesting that molecular dynamics may play an important role in imparting relaxed specificity with respect to the exact combination of nucleotides in the loop, except for the central nucleotide. In this work, we extend our previous studies of SRE-RNA interaction with VTS1p, by comparing the dynamics of the VTS1p-SAM domain both in its free form and when bound to SRE-RNA. The 15N relaxation studies of backbone dynamics suggest the presence of a dynamic interaction interface, with residues associated with specific G3 recognition becoming more rigid on RNA binding while other regions attain increased flexibility. The results parallel the observations from our studies of dynamics changes in SRE-RNA upon binding to VTS1p-SAM and shows that molecular dynamics could play a crucial role in modulating binding affinity and possibly contribute to the free energy of the interaction through an entropy-driven mechanism.


Subject(s)
RNA, Fungal/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Amino Acid Sequence , Base Pairing , Binding Sites , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Conformation , Protein Binding , Protein Structure, Tertiary , Saccharomyces cerevisiae/chemistry
8.
J Am Chem Soc ; 130(36): 12007-20, 2008 Sep 10.
Article in English | MEDLINE | ID: mdl-18698768

ABSTRACT

RNA recognition by proteins is often accompanied by significant changes in RNA dynamics in addition to conformational changes. However, there are very few studies which characterize the changes in molecular motions in RNA on protein binding. We present a quantitative (13)C NMR relaxation study of the changes in RNA dynamics in the pico-nanosecond time scale and micro-millisecond time scale resulting from interaction of the stem-loop SRE-RNA with the VTS1p-SAM domain. (13)C relaxation rates of the protonated carbons of the nucleotide base and anomeric carbons have been analyzed by employing the model-free formalism, for a fully (13)C/(15)N-labeled sample of the SRE-RNA in the free and protein-bound forms. In the free RNA, the nature of molecular motions are found to be distinctly different in the stem and the loop region. On binding to the protein, the nature of motions becomes more homogeneous throughout the RNA, with many residues showing increased flexibility at the aromatic carbon sites, while the anomeric carbon sites become more rigid. Surprisingly, we also observe indications of a slow collective motion of the RNA in the binding pocket of the protein. The observation of increased motions on binding is interesting in the context of growing evidence that binding does not always lead to motional restrictions and the resulting entropy gain could favor the free energy of association.


Subject(s)
RNA-Binding Proteins/chemistry , RNA/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Kinetics , Models, Chemical , Nuclear Magnetic Resonance, Biomolecular/methods , Nucleic Acid Conformation , Protein Binding , Protein Conformation , Protein Structure, Tertiary , RNA/metabolism , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Thermodynamics
9.
Nat Struct Mol Biol ; 14(9): 807-13, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17704818

ABSTRACT

Proteins of the RsmA/CsrA family are global translational regulators in many bacterial species. We have determined the solution structure of a complex formed between the RsmE protein, a member of this family from Pseudomonas fluorescens, and a target RNA encompassing the ribosome-binding site of the hcnA gene. The RsmE homodimer with its two RNA-binding sites makes optimal contact with an 5'-A/UCANGGANGU/A-3' sequence in the mRNA. When tightly gripped by RsmE, the ANGGAN core folds into a loop, favoring the formation of a 3-base-pair stem by flanking nucleotides. We validated these findings by in vivo and in vitro mutational analyses. The structure of the complex explains well how, by sequestering the Shine-Dalgarno sequence, the RsmA/CsrA proteins repress translation.


Subject(s)
Bacterial Proteins/physiology , Pseudomonas aeruginosa/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/physiology , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Electrophoretic Mobility Shift Assay , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , RNA, Bacterial/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism
10.
J Mol Biol ; 367(1): 174-86, 2007 Mar 16.
Article in English | MEDLINE | ID: mdl-17239394

ABSTRACT

NMR spectroscopy has proven to be a powerful tool for the structure determination of protein/RNA complexes. However, the quality of these structures depends critically on the number of unambiguous intermolecular and intra-RNA nuclear Overhauser effect (NOE) constraints that can be derived. This number is often limited due to exchange phenomena that can cause signal line broadening and the fact that unambiguous NOE assignments are challenging in systems that exchange between different conformations in the intermediate to fast exchange limit. These exchange processes can include exchange between free and bound form, as well as exchange of the ligand between different binding sites on the protein. Furthermore, for the large class of RNA metabolizing proteins that bind repetitive low-complexity RNA sequences in multiple register, exchange of the protein between these overlapping binding sites introduces additional exchange pathways. Here, we describe the strategy we used to overcome these exchange processes and to reduce significantly the line width of the RNA resonances in complexes of the RNA recognition motifs (RRMs) of the polypyrimidine tract-binding protein (PTB) in complex with pyrimidine tracts and hence allowed a highly precise structure determination. This method could be employed to derive structures of other protein/single-stranded nucleic acid complexes by NMR spectroscopy. Furthermore, we have determined the affinities of the individual RRMs of PTB for pyrimidine tracts of different length and sequence. These measurements show that PTB binds preferentially to long pyrimidine tracts that contain cytosine and hence confirm the structure of PTB in complex with RNA. Furthermore, they provide quantitative insight into the question of which pyrimidine sequences within alternatively spliced pre-mRNAs will be preferentially bound by PTB.


Subject(s)
Magnetic Resonance Spectroscopy , Polypyrimidine Tract-Binding Protein/chemistry , RNA/chemistry , Ribonucleoproteins/chemistry , Binding Sites , Humans , Nucleic Acid Conformation , Polypyrimidine Tract-Binding Protein/metabolism , Protein Structure, Tertiary , Pyrimidines/chemistry , RNA/metabolism , RNA-Binding Proteins/chemistry , Ribonucleoproteins/metabolism
11.
Nucleic Acids Res ; 34(17): 4943-59, 2006.
Article in English | MEDLINE | ID: mdl-16982642

ABSTRACT

A code predicting the RNA sequence that will be bound by a certain protein based on its amino acid sequence or its structure would provide a useful tool for the design of RNA binders with desired sequence-specificity. Such de novo designed RNA binders could be of extraordinary use in both medical and basic research applications. Furthermore, a code could help to predict the cellular functions of RNA-binding proteins that have not yet been extensively studied. A comparative analysis of Pumilio homology domains, zinc-containing RNA binders, hnRNP K homology domains and RNA recognition motifs is performed in this review. Based on this, a set of binding rules is proposed that hints towards a code for RNA recognition by these domains. Furthermore, we discuss the intermolecular interactions that are important for RNA binding and summarize their importance in providing affinity and specificity.


Subject(s)
RNA-Binding Proteins/chemistry , RNA/chemistry , Base Sequence , Binding Sites , Models, Molecular , Protein Binding , Protein Engineering , Protein Structure, Tertiary , RNA/metabolism , RNA-Binding Proteins/metabolism
12.
Nat Struct Mol Biol ; 13(2): 160-7, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16429156

ABSTRACT

Although the abundant sterile alpha motif (SAM) domain was originally classified as a protein-protein interaction domain, it has recently been shown that certain SAM domains have the ability to bind RNA, defining a new type of post-transcriptional gene regulator. To further understand the function of SAM-RNA recognition, we determined the solution structures of the SAM domain of the Saccharomyces cerevisiae Vts1p (Vts1p-SAM) and the Smaug response element (SRE) stem-loop RNA as a complex and in isolation. The structures show that Vts1p-SAM recognizes predominantly the shape of the SRE rather than its sequence, with the exception of a G located at the tip of the pentaloop. Using microarray gene profiling, we identified several genes in S. cerevisiae that seem to be regulated by Vts1p and contain one or more copies of the SRE.


Subject(s)
Nucleic Acid Conformation , RNA, Fungal/chemistry , RNA, Fungal/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism , Amino Acid Sequence , Gene Deletion , Genome, Fungal/genetics , Models, Molecular , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular , Oligonucleotide Array Sequence Analysis , Protein Structure, Secondary , Protein Structure, Tertiary , RNA-Binding Proteins/genetics , Response Elements/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Substrate Specificity
13.
EMBO J ; 25(1): 150-62, 2006 Jan 11.
Article in English | MEDLINE | ID: mdl-16362043

ABSTRACT

The polypyrimidine tract binding protein (PTB) is a 58 kDa protein involved in many aspects of RNA metabolism. In this study, we focused our attention on the structure of the two C-terminal RNA recognition motifs (RRM3 and RRM4) of PTB. In a previous study, it was found that the two RRMs are independent in the free state. We recently determined the structure of the same fragment in complex with RNA and found that the two RRMs interact extensively. This difference made us re-evaluate in detail the free protein structure and in particular the interdomain interface. We used a combination of NMR spectroscopy and segmental isotopic labeling to unambiguously study and characterize the interdomain interactions. An improved segmental isotopic labeling protocol was used, enabling us to unambiguously identify 130 interdomain NOEs between the two RRMs and to calculate a very precise structure. The structure reveals a large interdomain interface, resulting in a very unusual positioning of the two RRM domains relative to one another.


Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins/chemistry , Polypyrimidine Tract-Binding Protein/chemistry , Amino Acid Motifs/genetics , Carbon Isotopes , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Humans , Isotope Labeling , Magnetic Resonance Spectroscopy , Mutagenesis , Nitrogen Isotopes , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Protein Structure, Tertiary/genetics , RNA, Messenger/metabolism
14.
Science ; 309(5743): 2054-7, 2005 Sep 23.
Article in English | MEDLINE | ID: mdl-16179478

ABSTRACT

The polypyrimidine tract binding protein (PTB) is a 58-kilodalton RNA binding protein involved in multiple aspects of messenger RNA metabolism, including the repression of alternative exons. We have determined the solution structures of the four RNA binding domains (RBDs) of PTB, each bound to a CUCUCU oligonucleotide. Each RBD binds RNA with a different binding specificity. RBD3 and RBD4 interact, resulting in an antiparallel orientation of their bound RNAs. Thus, PTB will induce RNA looping when bound to two separated pyrimidine tracts within the same RNA. This leads to structural models for how PTB functions as an alternative-splicing repressor.


Subject(s)
Alternative Splicing , Heterogeneous-Nuclear Ribonucleoproteins/chemistry , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Polypyrimidine Tract-Binding Protein/chemistry , Polypyrimidine Tract-Binding Protein/metabolism , RNA/chemistry , RNA/metabolism , Amino Acid Sequence , Base Sequence , Binding Sites , Exons , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Humans , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Molecular Sequence Data , Mutation , Nuclear Magnetic Resonance, Biomolecular , Nuclear Proteins/metabolism , Oligoribonucleotides , Polypyrimidine Tract-Binding Protein/genetics , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Ribonucleoproteins/metabolism , Splicing Factor U2AF
SELECTION OF CITATIONS
SEARCH DETAIL
...