Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Stroke ; 55(1): 166-176, 2024 01.
Article in English | MEDLINE | ID: mdl-38063014

ABSTRACT

BACKGROUND: Within hours after intracerebral hemorrhage (ICH) onset, masses of polymorphonuclear neutrophils (PMNs) infiltrate the ICH-affected brain. After degranulation involving controlled release of many toxic antimicrobial molecules, the PMNs undergo rapid apoptosis and then are removed by phagocytic microglia/macrophages (MΦ) through a process called efferocytosis. Effective removal of PMNs may limit secondary brain damage and inflammation; however, the molecular mechanisms governing these cleanup activities are not well understood. We propose that scavenger receptor CD91 on myeloid phagocytes especially in presence of CD91 ligand, LTF (lactoferrin, protein abundant in PMNs), plays an important role in clearance of dead apoptotic PMNs (ANs). METHODS: Mice/rats were subjected to an autologous blood injection model of ICH. Primary cultured microglia were used to assess phagocytosis of ANs. Immunohistochemistry was employed to assess CD91 expression and PMN infiltration. CD91 knockout mice selectively in myeloid phagocytes (Mac-CD91-KO) were used to establish the CD91/LTF function in phagocytosis and in reducing ICH-induced injury, as assessed using behavioral tests, hematoma resolution, and oxidative stress. RESULTS: Masses of PMNs are found in ICH-affected brain, and they contain LTF. MΦ at the outer border of hematoma are densely packed, expressing CD91 and phagocytosing ANs. Microglia deficient in CD91 demonstrate defective phagocytosis of ANs, and mice deficient in CD91 (Mac-CD91-KO) subjected to ICH injury have increased neurological dysfunction that is associated with impaired hematoma resolution (hemoglobin and iron clearance) and elevated oxidative stress. LTF that normally ameliorates ICH injury in CD91-proficient control mice shows reduced therapeutic effects in Mac-CD91-KO mice. CONCLUSIONS: Our study suggests that CD91 plays a beneficial role in improving ANs phagocytosis and ultimately post-ICH outcome and that the beneficial effect of LTF in ICH is in part dependent on presence of CD91 on MΦ.


Subject(s)
Brain Injuries , Neutrophils , Rats , Mice , Animals , Neutrophils/metabolism , Lactoferrin/metabolism , Brain/metabolism , Cerebral Hemorrhage/drug therapy , Macrophages/metabolism , Microglia/metabolism , Hematoma/drug therapy
2.
Int J Mol Sci ; 24(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36982260

ABSTRACT

Aging drives cognitive decline, and mitochondrial dysfunction is a hallmark of age-induced neurodegeneration. Recently, we demonstrated that astrocytes secrete functional mitochondria (Mt), which help adjacent cells to resist damage and promote repair after neurological injuries. However, the relationship between age-dependent changes in astrocytic Mt function and cognitive decline remains poorly understood. Here, we established that aged astrocytes secret less functional Mt compared to young astrocytes. We found the aging factor C-C motif chemokine 11 (CCL11) is elevated in the hippocampus of aged mice, and that its level is reduced upon systemic administration of young Mt, in vivo. Aged mice receiving young Mt, but not aged Mt improved cognitive function and hippocampal integrity. Using a CCL11-induced aging-like model in vitro, we found that astrocytic Mt protect hippocampal neurons and enhance a regenerative environment through upregulating synaptogenesis-related gene expression and anti-oxidants that were suppressed by CCL11. Moreover, the inhibition of CCL11-specific receptor C-C chemokine receptor 3 (CCR3) boosted the expression of synaptogenesis-related genes in the cultured hippocampal neurons and restored the neurite outgrowth. This study suggests that young astrocytic Mt can preserve cognitive function in the CCL11-mediated aging brain by promoting neuronal survival and neuroplasticity in the hippocampus.


Subject(s)
Astrocytes , Neurons , Mice , Animals , Astrocytes/metabolism , Neurons/metabolism , Cognition , Brain/metabolism , Mitochondria/metabolism , Hippocampus/metabolism , Chemokine CCL11/metabolism
3.
J Neurosci ; 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35970559

ABSTRACT

Astrocytes release functional mitochondria (Mt) that play regulatory and pro-survival functions upon entering adjacent cells. We recently demonstrated that these released Mt could enter microglia to promote their reparative/pro-phagocytic phenotype that assists in hematoma cleanup and neurological recovery after intracerebral hemorrhage (ICH). However, a relevance of astrocytic Mt transfer into neurons in protecting brain after ICH is unclear. Here, we found that ICH causes a robust increase in superoxide generation and elevated oxidative damage that coincides with loss of the mitochondrial enzyme manganese superoxide dismutase (Mn-SOD). The damaging effect of ICH was reversed by intravenous transplantation of astrocytic Mt that upon entering the brain (and neurons), restored Mn-SOD levels and reduced neurological deficits in male mice subjected to ICH. Using an in vitro ICH-like injury model in cultured neurons, we established that astrocytic Mt upon entering neurons prevented reactive oxygen species-induced oxidative stress and neuronal death by restoring neuronal Mn-SOD levels, while at the same time promoted neurite extension and upregulation of synaptogenesis-related gene expression. Furthermore, we found that Mt genome-encoded small peptide humanin (HN) that is normally abundant in Mt, could simulate Mt-transfer effect on neuronal Mn-SOD expression, oxidative stress, and neuroplasticity under ICH-like injury. This study demonstrates that adoptive astrocytic Mt transfer enhances neuronal Mn-SOD-mediated anti-oxidative defense and neuroplasticity in the brain, which potentiate functional recovery following ICH.SIGNIFICANCE STATEMENTMitochondrial dysfunction and antioxidant defense play essential role in brain damage after intracerebral hemorrhage (ICH). Astrocytes release functional mitochondria (Mt) that enter adjacent cells to help brain homeostatic function. Here, we show that systemic transplantation of astrocytic Mt restores ICH-impaired neuronal anti-oxidative defense, enhances neurite outgrowth, and improves stroke recovery after ICH. Our study suggests that systemic transplantation of astrocytic Mt could be considered as a novel and potentially promising strategy for ICH treatment.

4.
J Neurosci ; 40(10): 2154-2165, 2020 03 04.
Article in English | MEDLINE | ID: mdl-31980585

ABSTRACT

Astrocytes are an integral component of the neurovascular unit where they act as homeostatic regulators, especially after brain injuries, such as stroke. One process by which astrocytes modulate homeostasis is the release of functional mitochondria (Mt) that are taken up by other cells to improve their function. However, the mechanisms underlying the beneficial effect of Mt transfer are unclear and likely multifactorial. Using a cell culture system, we established that astrocytes release both intact Mt and humanin (HN), a small bioactive peptide normally transcribed from the Mt genome. Further experiments revealed that astrocyte-secreted Mt enter microglia, where they induce HN expression. Similar to the effect of HN alone, incorporation of Mt by microglia (1) upregulated expression of the transcription factor peroxisome proliferator-activated receptor gamma and its target genes (including mitochondrial superoxide dismutase), (2) enhanced phagocytic activity toward red blood cells (an in vitro model of hematoma clearance after intracerebral hemorrhage [ICH]), and (3) reduced proinflammatory responses. ICH induction in male mice caused profound HN loss in the affected hemisphere. Intravenously administered HN penetrated perihematoma brain tissue, reduced neurological deficits, and improved hematoma clearance, a function that normally requires microglia/macrophages. This study suggests that astrocytic Mt-derived HN could act as a beneficial secretory factor, including when transported within Mt to microglia, where it promotes a phagocytic/reparative phenotype. These findings also indicate that restoring HN levels in the injured brain could represent a translational target for ICH. These favorable biological responses to HN warrant studies on HN as therapeutic target for ICH.SIGNIFICANCE STATEMENT Astrocytes are critical for maintaining brain homeostasis. Here, we demonstrate that astrocytes secrete mitochondria (Mt) and the Mt-genome-encoded, small bioactive peptide humanin (HN). Mt incorporate into microglia, and both Mt and HN promote a "reparative" microglia phenotype characterized by enhanced phagocytosis and reduced proinflammatory responses. Treatment with HN improved outcomes in an animal model of intracerebral hemorrhage, suggesting that this process could have biological relevance to stroke pathogenesis.


Subject(s)
Astrocytes/metabolism , Cerebral Hemorrhage , Intracellular Signaling Peptides and Proteins/metabolism , Microglia/metabolism , Mitochondria/metabolism , Animals , Female , Male , Mice , Mice, Inbred C57BL , Phagocytosis/physiology , Phenotype , Rats , Rats, Sprague-Dawley
5.
Stroke ; 51(3): 958-966, 2020 03.
Article in English | MEDLINE | ID: mdl-31914884

ABSTRACT

Background and Purpose- Phagocytic cells, such as microglia and blood-derived macrophages, are a key biological modality responsible for phagocytosis-mediated clearance of damaged, dead, or displaced cells that are compromised during senescence or pathological processes, including after stroke. This process of clearance is essential to eliminate the source of inflammation and to allow for optimal brain repair and functional recovery. Transcription factor, RXR (retinoic-X-receptor) is strongly implicated in phagocytic functions regulation, and as such could represent a novel target for brain recovery after stroke. Methods- Primary cultured microglia and bone marrow macrophages were used for phagocytic study. Mice with deleted RXR-α in myeloid phagocytes (Mac-RXR-α-/-) were subjected to transient middle cerebral artery occlusion to mimic ischemic stroke and then treated with RXR agonist bexarotene. RNA-sequencing and long-term recovery were evaluated. Results- Using cultured microglia, we demonstrated that the RXR-α promotes the phagocytic functions of microglia toward apoptotic neurons. Using mice with deleted RXR-α in myeloid phagocytes (Mac-RXR-α-/-), we have shown that despite behaving similarly to the control at early time points (up to 3 days, damage established histologically and behaviorally), these Mac-RXR-α-/- mice demonstrated worsened late functional recovery and developed brain atrophy that was larger in size than that seen in control mice. The RXR-α deficiency was associated with reduced expression of genes known to be under control of the prominent transcriptional RXR partner, PPAR (peroxisome proliferator-activated receptor)-γ, as well as genes encoding for scavenger receptors and genes that signify microglia/macrophages polarization to a reparative phenotype. Finally, we demonstrated that the RXR agonist, bexarotene, administered as late as 1 day after middle cerebral artery occlusion, improved neurological recovery, and reduced the atrophy volume as assessed 28 days after stroke. Bexarotene did not improve outcome in Mac-RXR-α-/- mice. Conclusions- Altogether, these data suggest that phagocytic cells control poststroke recovery and that RXR in these cells represents an attractive target with exceptionally long therapeutic window.


Subject(s)
Brain Ischemia/immunology , Brain/immunology , Gene Expression Regulation/immunology , Phagocytes/immunology , Phagocytosis , Retinoid X Receptor alpha/immunology , Stroke/immunology , Animals , Bexarotene/pharmacology , Brain/pathology , Brain Ischemia/genetics , Brain Ischemia/pathology , Gene Expression Regulation/drug effects , Mice , Mice, Knockout , Phagocytes/pathology , Retinoid X Receptor alpha/genetics , Stroke/genetics , Stroke/pathology
6.
Stroke ; 49(5): 1241-1247, 2018 05.
Article in English | MEDLINE | ID: mdl-29636422

ABSTRACT

BACKGROUND AND PURPOSE: Intracerebral hemorrhage (ICH) is a devastating disease with a 30-day mortality of ~50%. There are no effective therapies for ICH. ICH results in brain damage in 2 major ways: through the mechanical forces of extravasated blood and then through toxicity of the intraparenchymal blood components including hemoglobin/iron. LTF (lactoferrin) is an iron-binding protein, uniquely abundant in polymorphonuclear neutrophils (PMNs). After ICH, circulating blood PMNs enter the ICH-afflicted brain where they release LTF. By virtue of sequestrating iron, LTF may contribute to hematoma detoxification. METHODS: ICH in mice was produced using intrastriatal autologous blood injection. PMNs were depleted with intraperitoneal administration of anti-Ly-6G antibody. Treatment of mouse brain cell cultures with lysed RBC or iron was used as in vitro model of ICH. RESULTS: LTF mRNA was undetectable in the mouse brain, even after ICH. Unlike mRNA, LTF protein increased in ICH-affected hemispheres by 6 hours, peaked at 24 to 72 hours, and remained elevated for at least a week after ICH. At the single cell level, LTF was detected in PMNs in the hematoma-affected brain at all time points after ICH. We also found elevated LTF in the plasma after ICH, with a temporal profile similar to LTF changes in the brain. Importantly, mrLTF (recombinant mouse LTF) reduced the cytotoxicity of lysed RBC and FeCl3 to brain cells in culture. Ultimately, in an ICH model, systemic administration of mrLTF (at 3, 24, and 48 hours after ICH) reduced brain edema and ameliorated neurological deficits caused by ICH. mrLTF retained the benefit in reducing behavioral deficit even with 24-hour treatment delay. Interestingly, systemic depletion of PMNs at 24 hours after ICH worsened neurological deficits, suggesting that PMN infiltration into the brain at later stages after ICH could be a beneficial response. CONCLUSIONS: LTF delivered to the ICH-affected brain by infiltrating PMNs may assist in hematoma detoxification and represent a powerful potential target for the treatment of ICH.


Subject(s)
Brain/metabolism , Cerebral Hemorrhage/metabolism , Hematoma/metabolism , Iron/metabolism , Lactoferrin/genetics , Neutrophils/metabolism , RNA, Messenger/metabolism , Animals , Brain/drug effects , Brain Edema/metabolism , Cell Culture Techniques , Disease Models, Animal , Erythrocytes , In Vitro Techniques , Lactoferrin/metabolism , Lactoferrin/pharmacology , Mice
7.
Nat Commun ; 6: 7997, 2015 Aug 17.
Article in English | MEDLINE | ID: mdl-26278622

ABSTRACT

Apart from T helper (Th)-2 cells, T follicular helper (Tfh) cells are a major class of IL-4-producing T cells, required for regulation of type 2 humoral immunity; however, transcriptional control of IL-4 production in Tfh cells remains mainly unknown. Here, we show that the basic leucine zipper transcription factor ATF-like, Batf is important for IL-4 expression in Tfh cells rather than in canonical Th2 cells. Functionally, Batf in cooperation with interferon regulatory factor (IRF) 4 along with Stat3 and Stat6 trigger IL-4 production in Tfh cells by directly binding to and activation of the CNS2 region in the IL-4 locus. In addition, Batf-to-c-Maf signalling is an important determinant of IL-4 expression in Tfh cells. Batf deficiency impairs the generation of IL-4-producing Tfh cells that results in protection against allergic asthma. Our results thus indicate a positive role of Batf in promoting the generation of pro-allergic IL-4-producing Tfh cells.


Subject(s)
Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation/physiology , Interleukin-4/metabolism , T-Lymphocytes, Helper-Inducer/physiology , Adoptive Transfer , Animals , Asthma/immunology , Basic-Leucine Zipper Transcription Factors/genetics , Bone Marrow Cells , Cell Differentiation , Chromatin Immunoprecipitation , Interleukin-4/genetics , Male , Mice , Mice, Knockout , Ovalbumin/immunology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Antigen, T-Cell, alpha-beta/genetics , Receptors, Antigen, T-Cell, alpha-beta/metabolism
8.
Nat Commun ; 5: 4732, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-25145352

ABSTRACT

T helper (Th)-2 cells are the major players in allergic asthma; however, the mechanisms that control Th2-mediated inflammation are poorly understood. Here we find that enhanced expression of Grail, an E3 ubiquitin ligase, in Th2 cells depends on interleukin (IL)-4-signalling components, signal transducer and activator of transcription 6 (Stat6) and Gata3, that bind to and transactivate the Grail promoter. Grail deficiency in T cells leads to increased expression of Th2 effector cytokines in vitro and in vivo and Grail-deficient mice are more susceptible to allergic asthma. Mechanistically, the enhanced effector function of Grail-deficient Th2 cells is mediated by increased expression of Stat6 and IL-4 receptor α-chain. Grail interacts with Stat6 and targets it for ubiquitination and degradation. Thus, our results indicate that Grail plays a critical role in controlling Th2 development through a negative feedback loop.


Subject(s)
Asthma/immunology , STAT6 Transcription Factor/metabolism , Th2 Cells/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Asthma/genetics , Asthma/pathology , Cell Differentiation , Feedback, Physiological , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , HEK293 Cells , Humans , Interleukin-4/pharmacology , Male , Mice, Inbred C57BL , Mice, Knockout , Th2 Cells/drug effects , Th2 Cells/physiology , Ubiquitin-Protein Ligases/genetics , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...