Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Allergy ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864116

ABSTRACT

BACKGROUND: Allergic diseases begin early in life and are often chronic, thus creating an inflammatory environment that may precede or exacerbate other pathologies. In this regard, allergy has been associated to metabolic disorders and with a higher risk of cardiovascular disease, but the underlying mechanisms remain incompletely understood. METHODS: We used a murine model of allergy and atherosclerosis, different diets and sensitization methods, and cell-depleting strategies to ascertain the contribution of acute and late phase inflammation to dyslipidemia. Untargeted lipidomic analyses were applied to define the lipid fingerprint of allergic inflammation at different phases of allergic pathology. Expression of genes related to lipid metabolism was assessed in liver and adipose tissue at different times post-allergen challenge. Also, changes in serum triglycerides (TGs) were evaluated in a group of 59 patients ≥14 days after the onset of an allergic reaction. RESULTS: We found that allergic inflammation induces a unique lipid signature that is characterized by increased serum TGs and changes in the expression of genes related to lipid metabolism in liver and adipose tissue. Alterations in blood TGs following an allergic reaction are independent of T-cell-driven late phase inflammation. On the contrary, the IgG-mediated alternative pathway of anaphylaxis is sufficient to induce a TG increase and a unique lipid profile. Lastly, we demonstrated an increase in serum TGs in 59 patients after undergoing an allergic reaction. CONCLUSION: Overall, this study reveals that IgG-mediated allergic inflammation regulates lipid metabolism.

2.
Int J Mol Sci ; 24(16)2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37628895

ABSTRACT

The resolution of inflammation is a complex process that is critical for removing inflammatory cells and restoring tissue function. The dysregulation of these mechanisms leads to chronic inflammatory disorders. Platelets, essential cells for preserving homeostasis, are thought to play a role in inflammation as they are a source of immunomodulatory factors. Our aim was to identify key metabolites carried by platelet-derived extracellular vesicles (PL-EVs) in a model of allergic inflammation. PL-EVs were isolated by serial ultracentrifugation using platelet-rich plasma samples obtained from platelet apheresis from severely (n = 6) and mildly (n = 6) allergic patients and non-allergic individuals used as controls (n = 8). PL-EVs were analysed by a multiplatform approach using liquid and gas chromatography coupled to mass spectrometry (LC-MS and GC-MS, respectively). PL-EVs obtained from severely and mildly allergic patients and control individuals presented comparable particle concentrations and sizes with similar protein concentrations. Strikingly, PL-EVs differed in their lipid and metabolic content according to the severity of inflammation. L-carnitine, ceramide (Cer (d18:0/24:0)), and several triglycerides, all of which seem to be involved in apoptosis and regulatory T functions, were higher in PL-EVs from patients with mild allergic inflammation than in those with severe inflammation. In contrast, PL-EVs obtained from patients with severe allergic inflammation showed an alteration in the arachidonic acid pathway. This study demonstrates that PL-EVs carry specific lipids and metabolites according to the degree of inflammation in allergic patients and propose novel perspectives for characterising the progression of allergic inflammation.


Subject(s)
Blood Platelets , Extracellular Vesicles , Humans , Gas Chromatography-Mass Spectrometry , Arachidonic Acid , Inflammation
3.
Allergy ; 78(5): 1319-1332, 2023 05.
Article in English | MEDLINE | ID: mdl-36527294

ABSTRACT

BACKGROUND: Mechanisms causing the onset and perpetuation of inflammation in severe allergic patients remain unknown. Our previous studies suggested that severe allergic inflammation is linked to platelet dysfunction. METHODS: Platelet-rich plasma (PRP) and platelet-poor plasma (PPP) samples were obtained by platelet-apheresis from severe (n = 7) and mild (n = 10) allergic patients and nonallergic subjects (n = 9) to perform platelet lipidomics by liquid chromatography coupled to mass spectrometry (LC-MS) and RNA-seq analysis. Significant metabolites and transcripts were used to identify compromised biological pathways in the severe phenotype. Platelet and inflammation-related proteins were quantified by Luminex. RESULTS: Platelets from severe allergic patients were characterized by high levels of ceramides, phosphoinositols, phosphocholines, and sphingomyelins. In contrast, they showed a decrease in eicosanoid precursor levels. Biological pathway analysis performed with the significant lipids revealed the alteration of phospholipases, calcium-dependent events, and linolenic metabolism. RNAseq confirmed mRNA overexpression of genes related to platelet activation and arachidonic acid metabolism in the severe phenotypes. Pathway analysis indicated the alteration of NOD, MAPK, TLR, TNF, and IL-17 pathways in the severe phenotype. P-Selectin and IL-17AF proteins were increased in the severe phenotype. CONCLUSIONS: This study demonstrates that platelet lipid, mRNA, and protein content is different according to allergy severity. These findings suggest that platelet load is a potential source of biomarkers and a new chance for therapeutic targets in severe inflammatory pathologies.


Subject(s)
Blood Platelets , Hypersensitivity , Humans , Blood Platelets/metabolism , Phenotype , Hypersensitivity/genetics , Hypersensitivity/metabolism , Inflammation/metabolism , RNA, Messenger/metabolism
4.
Front Med (Lausanne) ; 9: 1009324, 2022.
Article in English | MEDLINE | ID: mdl-36213665

ABSTRACT

Asthma is a multifactorial, heterogeneous disease that has a challenging management. It can be divided in non-allergic and allergic (usually associated with house dust mites (HDM) sensitization). There are several treatments options for asthma (corticosteroids, bronchodilators, antileukotrienes, anticholinergics,…); however, there is a subset of patients that do not respond to any of the treatments, who can display either a T2 or a non-T2 phenotype. A deeper understanding of the differential mechanisms underlying each phenotype will help to decipher the contribution of allergy to the acquisition of this uncontrolled severe phenotype. Here, we aim to elucidate the biological pathways associated to allergy in the uncontrolled severe asthmatic phenotype. To do so, twenty-three severe uncontrolled asthmatic patients both with and without HDM-allergy were recruited from Hospital Universitario de Gran Canaria Dr. Negrin. A metabolomic fingerprint was obtained through liquid chromatography coupled to mass spectrometry, and identified metabolites were associated with their pathways. 9/23 patients had uncontrolled HDM-allergic asthma (UCA), whereas 14 had uncontrolled, non-allergic asthma (UCNA). 7/14 (50%) of the UCNA patients had Aspirin Exacerbated Respiratory Disease. There were no significant differences regarding gender or body mass index; but there were significant differences in age and onset age, which were higher in UCNA patients; and in total IgE, which was higher in UCA. The metabolic fingerprint revealed that 103 features were significantly different between UCNA and UCA (p < 0.05), with 97 being increased in UCA and 6 being decreased. We identified lysophosphocholines (LPC) 18:2, 18:3 and 20:4 (increased in UCA patients); and deoxycholic acid and palmitoleoylcarnitine (decreased in UCA). These metabolites were related with a higher activation of phospholipase A2 (PLA2) and other phospholipid metabolism pathways. Our results show that allergy induces the activation of specific inflammatory pathways, such as the PLA2 pathway, which supports its role in the development of an uncontrolled asthma phenotype. There are also clinical differences, such as higher levels of IgE and earlier onset ages for the allergic asthmatic group, as expected. These results provide evidences to better understand the contribution of allergy to the establishment of a severe uncontrolled phenotype.

5.
Allergy ; 77(11): 3249-3266, 2022 11.
Article in English | MEDLINE | ID: mdl-35781885

ABSTRACT

Allergic diseases are allergen-induced immunological disorders characterized by the development of type 2 immunity and IgE responses. The prevalence of allergic diseases has been on the rise alike cardiovascular disease (CVD), which affects arteries of different organs such as the heart, the kidney and the brain. The underlying cause of CVD is often atherosclerosis, a disease distinguished by endothelial dysfunction, fibrofatty material accumulation in the intima of the artery wall, smooth muscle cell proliferation, and Th1 inflammation. The opposed T-cell identity of allergy and atherosclerosis implies an atheroprotective role for Th2 cells by counteracting Th1 responses. Yet, the clinical association between allergic disease and CVD argues against it. Within, we review different phases of allergic pathology, basic immunological mechanisms of atherosclerosis and the clinical association between allergic diseases (particularly asthma, atopic dermatitis, allergic rhinitis and food allergy) and CVD. Then, we discuss putative atherogenic mechanisms of type 2 immunity and allergic inflammation including acute allergic reactions (IgE, IgG1, mast cells, macrophages and allergic mediators such as vasoactive components, growth factors and those derived from the complement, contact and coagulation systems) and late phase inflammation (Th2 cells, eosinophils, type 2 innate-like lymphoid cells, alarmins, IL-4, IL-5, IL-9, IL-13 and IL-17).


Subject(s)
Atherosclerosis , Rhinitis, Allergic , Humans , Cytokines/metabolism , Th2 Cells , Rhinitis, Allergic/metabolism , Atherosclerosis/etiology , Atherosclerosis/metabolism , Immunoglobulin E , Inflammation/metabolism
6.
Metabolites ; 12(7)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35888716

ABSTRACT

The transition from mild to severe allergic phenotypes is still poorly understood and there is an urgent need of incorporating new therapies, accompanied by personalized diagnosis approaches. This work presents the development of a novel targeted metabolomic methodology for the analysis of 36 metabolites related to allergic inflammation, including mostly sphingolipids, lysophospholipids, amino acids, and those of energy metabolism previously identified in non-targeted studies. The methodology consisted of two complementary chromatography methods, HILIC and reversed-phase. These were developed using liquid chromatography, coupled to triple quadrupole mass spectrometry (LC-QqQ-MS) in dynamic multiple reaction monitoring (dMRM) acquisition mode and were validated using ICH guidelines. Serum samples from two clinical models of allergic asthma patients were used for method application, which were as follows: (1) corticosteroid-controlled (ICS, n = 6) versus uncontrolled (UC, n = 4) patients, and immunotherapy-controlled (IT, n = 23) versus biologicals-controlled (BIO, n = 12) patients. The results showed significant differences mainly in lysophospholipids using univariate analyses in both models. Multivariate analysis for model 1 was able to distinguish both groups, while for model 2, the results showed the correct classification of all BIO samples within their group. Thus, this methodology can be of great importance for further understanding the role of these metabolites in allergic diseases as potential biomarkers for disease severity and for predicting patient treatment response.

8.
Allergy ; 77(6): 1772-1785, 2022 06.
Article in English | MEDLINE | ID: mdl-34839541

ABSTRACT

BACKGROUND: Asthma is a complex, multifactorial disease often linked with sensitization to house dust mites (HDM). There is a subset of patients that does not respond to available treatments, who present a higher number of exacerbations and a worse quality of life. To understand the mechanisms of poor asthma control and disease severity, we aim to elucidate the metabolic and immunologic routes underlying this specific phenotype and the associated clinical features. METHODS: Eighty-seven patients with a clinical history of asthma were recruited and stratified in 4 groups according to their response to treatment: corticosteroid-controlled (ICS), immunotherapy-controlled (IT), biologicals-controlled (BIO) or uncontrolled (UC). Serum samples were analysed by metabolomics and proteomics; and classifiers were built using machine-learning algorithms. RESULTS: Metabolomic analysis showed that ICS and UC groups cluster separately from one another and display the highest number of significantly different metabolites among all comparisons. Metabolite identification and pathway enrichment analysis highlighted increased levels of lysophospholipids related to inflammatory pathways in the UC patients. Likewise, 8 proteins were either upregulated (CCL13, ARG1, IL15 and TNFRSF12A) or downregulated (sCD4, CCL19 and IFNγ) in UC patients compared to ICS, suggesting a significant activation of T cells in these patients. Finally, the machine-learning model built including metabolomic and clinical data was able to classify the patients with an 87.5% accuracy. CONCLUSIONS: UC patients display a unique fingerprint characterized by inflammatory-related metabolites and proteins, suggesting a pro-inflammatory environment. Moreover, the integration of clinical and experimental data led to a deeper understanding of the mechanisms underlying UC phenotype.


Subject(s)
Asthma , Hypersensitivity , Animals , Antigens, Dermatophagoides , Humans , Pyroglyphidae , Quality of Life
9.
Clin Exp Allergy ; 51(10): 1295-1309, 2021 10.
Article in English | MEDLINE | ID: mdl-34310748

ABSTRACT

BACKGROUND: Despite the increasing incidence of anaphylaxis, its underlying molecular mechanisms and biomarkers for appropriate diagnosis remain undetermined. The rapid onset and potentially fatal outcome in the absence of managed treatment prevent its study. Up today, there are still no known biomarkers that allow an unequivocal diagnosis. Therefore, the aim of this study was to explore metabolic changes in patients suffering anaphylactic reactions depending on the trigger (food and/or drug) and severity (moderate and severe) in a real-life set-up. METHODS: Eighteen episodes of anaphylaxis, one per patient, were analysed. Sera were collected during the acute phase (T1), the recovery phase (T2) and around 2-3 months after the anaphylactic reaction (T0: basal state). Reactions were classified following an exhaustive allergological evaluation for severity and trigger. Sera samples were analysed using untargeted metabolomics combining liquid chromatography coupled to mass spectrometry (LC-MS) and proton nuclear magnetic resonance spectroscopy (1 H-NMR). RESULTS: 'Food T1 vs T2' and 'moderate T1 vs T2' anaphylaxis comparisons showed clear metabolic patterns during the onset of an anaphylactic reaction, which differed from those induced by drugs, food + drug or severe anaphylaxis. Moreover, the model of food anaphylaxis was able to distinguish the well-characterized IgE (antibiotics) from non-IgE-mediated anaphylaxis (nonsteroidal anti-inflammatory drugs), suggesting a differential metabolic pathway associated with the mechanism of action. Metabolic differences between 'moderate vs severe' at the acute phase T1 and at basal state T0 were studied. Among the altered metabolites, glucose, lipids, cortisol, betaine and oleamide were observed altered. CONCLUSIONS: The results of this exploratory study provide the first evidence that different anaphylactic triggers or severity induce differential metabolic changes along time or at specific time-point, respectively. Besides, the basal status T0 might identify high-risk patients, thus opening new ways to understand, diagnose and treat anaphylaxis.


Subject(s)
Anaphylaxis , Allergens , Anaphylaxis/chemically induced , Anaphylaxis/etiology , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Biomarkers , Food , Humans
10.
Front Mol Biosci ; 8: 662792, 2021.
Article in English | MEDLINE | ID: mdl-34055883

ABSTRACT

Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by persistent symptoms associated to the development of nasal polyps. To this day, the molecular mechanisms involved are still not well defined. However, it has been suggested that a sustained inflammation as allergy is involved in its onset. In this exploratory study, the aim was to investigate the effect of the allergic status in the development of CRSwNP. To achieve this, we recruited 22 patients with CRSwNP and classified them in non-allergic and allergic using ImmunoCAP ISAC molecular diagnosis. Plasma samples were analyzed using liquid chromatography coupled to mass spectrometry (LC-MS). Subsequently, significant metabolites from plasma that were commercially available were then analyzed by targeted analysis in some nasal polyps. Additionally, nasal polyp and nasal mucosa samples were examined for eosinophils, neutrophils, CD3+ and CD11c+ cells, as well as collagen deposition and goblet cell hyperplasia. We found that 9 out of the 22 patients were sensitized to some aeroallergens (named as allergic CRSwNP). The other 13 patients had no sensitizations (non-allergic CRSwNP). Regarding metabolomics, bilirubin, cortisol, lysophosphatidylcholines (LPCs) 16:0, 18:0 and 20:4 and lysophosphatidylinositol (LPI) 20:4, which are usually related to a sustained allergic inflammation, were unexpectedly increased in plasma of non-allergic CRSwNP compared to allergic CRSwNP. LPC 16:0, LPC 18:0 and LPI 20:4 followed the same trend in nasal polyp as they did in plasma. Comparison of nasal polyps with nasal mucosa showed a significant increase in eosinophils (p < 0.001) and neutrophils (p < 0.01) in allergic CRSwNP. There were more eosinophils in polyps of non-allergic CRSwNP than in their nasal mucosa (p < 0.01). Polyps from non-allergic CRSwNP had less eosinophils than the polyps of allergic CRSwNP (p < 0.05) and reduced amounts of collagen compared to their nasal mucosa (p < 0.001). Our data suggests that there is a systemic inflammatory response associated to CRSwNP in the absence of allergy, which could be accountable for the nasal polyp development. Allergic CRSwNP presented a higher number of eosinophils in nasal polyps, suggesting that eosinophilia might be connected to the development of nasal polyps in this phenotype.

12.
Allergy ; 76(4): 1199-1212, 2021 04.
Article in English | MEDLINE | ID: mdl-32813887

ABSTRACT

BACKGROUND: Sublingual allergen-specific immunotherapy (SLIT) intervention improves the control of grass pollen allergy by maintaining allergen tolerance after cessation. Despite its widespread use, little is known about systemic effects and kinetics associated to SLIT, as well as the influence of the patient sensitization phenotype (Mono- or Poly-sensitized). In this quest, omics sciences could help to gain new insights to understand SLIT effects. METHODS: 47 grass-pollen-allergic patients were enrolled in a double-blind, placebo-controlled, multicenter trial using GRAZAX® during 2 years. Immunological assays (sIgE, sIgG4, and ISAC) were carried out to 31 patients who finished the trial. Additionally, serum and PBMCs samples were analyzed by metabolomics and transcriptomics, respectively. Based on their sensitization level, 22 patients were allocated in Mono- or Poly-sensitized groups, excluding patients allergic to epithelia. Individuals were compared based on their treatment (Active/Placebo) and sensitization level (Mono/Poly). RESULTS: Kinetics of serological changes agreed with those previously described. At two years of SLIT, there are scarce systemic changes that could be associated to improvement in systemic inflammation. Poly-sensitized patients presented a higher inflammation at inclusion, while Mono-sensitized patients presented a reduced activity of mast cells and phagocytes as an effect of the treatment. CONCLUSIONS: The most relevant systemic change detected after two years of SLIT was the desensitization of effector cells, which was only detected in Mono-sensitized patients. This change may be related to the clinical improvement, as previously reported, and, together with the other results, may explain why clinical effect is lost if SLIT is discontinued at this point.


Subject(s)
Rhinitis, Allergic, Seasonal , Sublingual Immunotherapy , Allergens , Biomarkers , Desensitization, Immunologic , Double-Blind Method , Humans , Immunotherapy , Poaceae , Pollen , Rhinitis, Allergic, Seasonal/diagnosis , Rhinitis, Allergic, Seasonal/therapy
13.
Front Allergy ; 2: 675557, 2021.
Article in English | MEDLINE | ID: mdl-35386967

ABSTRACT

Allergy is defined as a complex chronic inflammatory condition in which genetic and environmental factors are implicated. Sphingolipids are involved in multiple biological functions, from cell membrane components to critical signaling molecules. To date, sphingolipids have been studied in different human pathologies such as neurological disorders, cancer, autoimmunity, and infections. Sphingolipid metabolites, in particular, ceramide and sphingosine-1-phosphate (S1P), regulate a diverse range of cellular processes that are important in immunity and inflammation. Moreover, variations in the sphingolipid concentrations have been strongly associated with allergic diseases. This review will focus on the role of sphingolipids in the development of allergic sensitization and allergic inflammation through the activation of immune cells resident in tissues, as well as their role in barrier remodeling and anaphylaxis. The knowledge gained in this emerging field will help to develop new therapeutic options for allergic disorders.

14.
Metabolites ; 9(11)2019 Oct 24.
Article in English | MEDLINE | ID: mdl-31652940

ABSTRACT

Metabolomics, understood as the science that manages the study of compounds from the metabolism, is an essential tool for deciphering metabolic changes in disease. The experiments rely on the use of high-throughput analytical techniques such as liquid chromatography coupled to mass spectrometry (LC-ToF MS). This hyphenation has brought positive aspects such as higher sensitivity, specificity and the extension of the metabolome coverage in a single run. The analysis of a high number of samples in a single batch is currently not always feasible due to technical and practical issues (i.e., a drop of the MS signal) which result in the MS stopping during the experiment obtaining more than a single sample batch. In this situation, careful data treatment is required to enable an accurate joint analysis of multi-batch data sets. This paper summarizes the analytical strategies in large-scale metabolomic experiments; special attention has been given to QC preparation troubleshooting and data treatment. Moreover, labeled internal standards analysis and their aim in data treatment, and data normalization procedures (intra- and inter-batch) are described. These concepts are exemplified using a cohort of 165 patients from a study in asthma.

15.
Sci Rep ; 9(1): 2295, 2019 02 19.
Article in English | MEDLINE | ID: mdl-30783155

ABSTRACT

Osteocytes are the main cells of bone tissue and play a crucial role in bone formation and resorption. Recent studies have indicated that Diabetes Mellitus (DM) affects bone mass and potentially causes higher bone fracture risk. Previous work on osteocyte cell cultures has demonstrated that mechanotransduction is impaired after culture under diabetic pre-conditioning with high glucose (HG), specifically osteoclast recruitment and differentiation. The aim of this study was to analyze the extracellular metabolic changes of osteocytes regarding two conditions: pre-conditioning to either basal levels of glucose (B), mannitol (M) or HG cell media, and mechanical stimulation by fluid flow (FF) in contrast to static condition (SC). Secretomes were analyzed using Liquid Chromatography and Capillary Electrophoresis both coupled to Mass Spectrometry (LC-MS and CE-MS, respectively). Results showed the osteocyte profile was very similar under SC, regardless of their pre-conditioning treatment, while, after FF stimulation, secretomes followed different metabolic signatures depending on the pre-conditioning treatment. An important increment of citrate pointed out that osteocytes release citrate outside of the cell to induce osteoblast activation, while HG environment impaired FF effect. This study demonstrates for the first time that osteocytes increase citrate excretion under mechanical stimulation, and that HG environment impaired this effect.


Subject(s)
Citric Acid/metabolism , Glucose/pharmacology , Osteocytes/drug effects , Osteocytes/metabolism , Adenosine Triphosphate/metabolism , Animals , Chromatography, Liquid , Electrophoresis, Capillary , Mannitol/pharmacology , Mass Spectrometry , Mechanotransduction, Cellular , Metabolomics , Mice , Principal Component Analysis
16.
Allergy ; 73(11): 2137-2149, 2018 11.
Article in English | MEDLINE | ID: mdl-30028518

ABSTRACT

BACKGROUND: Prevalence and severity of allergic diseases have increased worldwide. To date, respiratory allergy phenotypes are not fully characterized and, along with inflammation progression, treatment is increasingly complex and expensive. Profilin sensitization constitutes a good model to study the progression of allergic inflammation. Our aim was to identify the underlying mechanisms and the associated biomarkers of this progression, focusing on severe phenotypes, using transcriptomics and metabolomics. METHODS: Twenty-five subjects were included in the study. Plasma samples were analyzed using gas and liquid chromatography coupled to mass spectrometry (GC-MS and LC-MS, respectively). Individuals were classified in four groups-"nonallergic," "mild," "moderate," and "severe"-based on their clinical history, their response to an oral challenge test with profilin, and after a refinement using a mathematical metabolomic model. PBMCs were used for microarray analysis. RESULTS: We found a set of transcripts and metabolites that were specific for the "severe" phenotype. By metabolomics, a decrease in carbohydrates and pyruvate and an increase in lactate were detected, suggesting aerobic glycolysis. Other metabolites were incremented in "severe" group: lysophospholipids, sphingosine-1-phosphate, sphinganine-1-phosphate, and lauric, myristic, palmitic, and oleic fatty acids. On the other hand, carnitines were decreased along severity. Significant transcripts in the "severe" group were found to be downregulated and were associated with platelet functions, protein synthesis, histone modification, and fatty acid metabolism. CONCLUSION: We have found evidence that points to the association of severe allergic inflammation with platelet functions alteration, together with reduced protein synthesis, and switch of immune cells to aerobic glycolysis.


Subject(s)
Biomarkers , Bronchial Hyperreactivity/etiology , Bronchial Hyperreactivity/metabolism , Food Hypersensitivity/etiology , Food Hypersensitivity/metabolism , Food/adverse effects , Genomics , Metabolomics , Blood Platelets/metabolism , Bronchial Hyperreactivity/diagnosis , Chromatography, Liquid , Computational Biology/methods , Female , Food Hypersensitivity/diagnosis , Gas Chromatography-Mass Spectrometry , Gene Expression Profiling , Genomics/methods , Humans , Male , Mass Spectrometry , Metabolome , Metabolomics/methods , Phenotype , Severity of Illness Index
17.
Genetics ; 205(2): 657-671, 2017 02.
Article in English | MEDLINE | ID: mdl-27913618

ABSTRACT

In meiosis I, chromosomes become paired with their homologous partners and then are pulled toward opposite poles of the spindle. In the budding yeast, Saccharomyces cerevisiae, in early meiotic prophase, centromeres are observed to associate in pairs in a homology-independent manner; a process called centromere coupling. Later, as homologous chromosomes align, their centromeres associate in a process called centromere pairing. The synaptonemal complex protein Zip1 is necessary for both types of centromere association. We aimed to test the role of centromere coupling in modulating recombination at centromeres, and to test whether the two types of centromere associations depend upon the same sets of genes. The zip1-S75E mutation, which blocks centromere coupling but no other known functions of Zip1, was used to show that in the absence of centromere coupling, centromere-proximal recombination was unchanged. Further, this mutation did not diminish centromere pairing, demonstrating that these two processes have different genetic requirements. In addition, we tested other synaptonemal complex components, Ecm11 and Zip4, for their contributions to centromere pairing. ECM11 was dispensable for centromere pairing and segregation of achiasmate partner chromosomes; while ZIP4 was not required for centromere pairing during pachytene, but was required for proper segregation of achiasmate chromosomes. These findings help differentiate the two mechanisms that allow centromeres to interact in meiotic prophase, and illustrate that centromere pairing, which was previously shown to be necessary to ensure disjunction of achiasmate chromosomes, is not sufficient for ensuring their disjunction.


Subject(s)
Centromere/genetics , Chromosome Pairing , Meiosis , Saccharomyces cerevisiae/genetics , Synaptonemal Complex/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Recombination, Genetic , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Synaptonemal Complex/metabolism
18.
Chromosoma ; 123(1-2): 43-55, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24126501

ABSTRACT

Observations of a wide range of organisms show that the centromeres form associations of pairs or small groups at different stages of meiotic prophase. Little is known about the functions or mechanisms of these associations, but in many cases, synaptonemal complex elements seem to play a fundamental role. Two main associations are observed: homology-independent associations very early in the meiotic program-sometimes referred to as centromere coupling-and a later association of homologous centromeres, referred to as centromere pairing or tethering. The later centromere pairing initiates during synaptonemal complex assembly, then persists after the dissolution of the synaptonemal complex. While the function of the homology-independent centromere coupling remains a mystery, centromere pairing appears to have a direct impact on the chromosome segregation fidelity of achiasmatic chromosomes. Recent work in yeast, Drosophila, and mice suggest that centromere pairing is a previously unappreciated, general meiotic feature that may promote meiotic segregation fidelity of the exchange and non-exchange chromosomes.


Subject(s)
Centromere/metabolism , Meiosis , Animals , Chromosomes/metabolism , Humans , Plants/metabolism , Synaptonemal Complex/metabolism
19.
Science ; 339(6123): 1071-4, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23371552

ABSTRACT

The conserved kinases Mps1 and Ipl1/Aurora B are critical for enabling chromosomes to attach to microtubules so that partner chromosomes will be segregated correctly from each other, but the precise roles of these kinases have been unclear. We imaged live yeast cells to elucidate the stages of chromosome-microtubule interactions and their regulation by Ipl1 and Mps1 through meiosis I. Ipl1 was found to release kinetochore-microtubule (kMT) associations after meiotic entry, liberating chromosomes to begin homologous pairing. Surprisingly, most chromosome pairs began their spindle interactions with incorrect kMT attachments. Ipl1 released these improper connections, whereas Mps1 triggered the formation of new force-generating microtubule attachments. This microtubule release and reattachment cycle could prevent catastrophic chromosome segregation errors in meiosis.


Subject(s)
Chromosome Segregation/physiology , Chromosomes, Fungal/genetics , Intracellular Signaling Peptides and Proteins/physiology , Meiosis/physiology , Protein Serine-Threonine Kinases/physiology , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/physiology , Aurora Kinases , Chromosome Segregation/genetics , Intracellular Signaling Peptides and Proteins/genetics , Kinetochores/enzymology , Meiosis/genetics , Microtubules/enzymology , Mutation , Protein Serine-Threonine Kinases/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
20.
PLoS One ; 5(4): e10336, 2010 Apr 23.
Article in English | MEDLINE | ID: mdl-20428251

ABSTRACT

BACKGROUND: Over the past thirty years several reports of the pairing or association of non-homologous centromeres during meiotic prophase have appeared in the literature. Recently, the homology-independent pairwise association of centromeres, termed centromere coupling, was also reported in budding yeast. It seems paradoxical that centromeres would pair with non-homologous partners during a process intended to align homologous chromosomes, yet the conservation of this phenomenon across a wide range of species suggests it may play an important role in meiosis. PRINCIPAL FINDINGS: To better define the role of this phenomenon in budding yeast, experiments were preformed to place centromere coupling within the context of landmark meiotic events. Soon after the initiation of the meiotic program, centromeres were found to re-organize from a single cluster into non-homologous couples. Centromere coupling is detected as soon as chromosome replication is finished and persists while the recombination protein Dmc1 is loaded onto the chromosomes, suggesting that centromere coupling persists through the time of double strand break formation. In the absence of the synaptonemal complex component, Zip1, centromere coupling was undetectable, at all times examined, confirming the essential role of this protein on this process. Finally, the timely release of centromere coupling depends on the recombination-initiating enzyme, Spo11, suggesting a connection between events in homologous pairing/recombination and the regulation of centromere coupling. CONCLUSIONS: Based on our results we propose a role for centromere coupling in blocking interactions between homologous centromeres as recombination initiation is taking place.


Subject(s)
Centromere/metabolism , Meiotic Prophase I , Saccharomycetales/cytology , Endodeoxyribonucleases/physiology , Fungal Proteins/physiology , Meiosis , Recombination, Genetic , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...