Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 7: 2060, 2016.
Article in English | MEDLINE | ID: mdl-28127301

ABSTRACT

Cassava brown streak disease (CBSD) presents a serious threat to cassava production in East and Central Africa. Currently, no cultivars with high levels of resistance to CBSD are available to farmers. Transgenic RNAi technology was employed to combat CBSD by fusing coat protein (CP) sequences from Ugandan cassava brown streak virus (UCBSV) and Cassava brown streak virus (CBSV) to create an inverted repeat construct (p5001) driven by the constitutive Cassava vein mosaic virus promoter. Twenty-five plant lines of cultivar TME 204 expressing varying levels of small interfering RNAs (siRNAs) were established in confined field trials (CFTs) in Uganda and Kenya. Within an initial CFT at Namulonge, Uganda, non-transgenic TME 204 plants developed foliar and storage root CBSD incidences at 96-100% by 12 months after planting. In contrast, 16 of the 25 p5001 transgenic lines showed no foliar symptoms and had less than 8% of their storage roots symptomatic for CBSD. A direct positive correlation was seen between levels of resistance to CBSD and expression of transgenic CP-derived siRNAs. A subsequent CFT was established at Namulonge using stem cuttings from the initial trial. All transgenic lines established remained asymptomatic for CBSD, while 98% of the non-transgenic TME 204 stake-derived plants developed storage roots symptomatic for CBSD. Similarly, very high levels of resistance to CBSD were demonstrated by TME 204 p5001 RNAi lines grown within a CFT over a full cropping cycle at Mtwapa, coastal Kenya. Sequence analysis of CBSD causal viruses present at the trial sites showed that the transgenic lines were exposed to both CBSV and UCBSV, and that the sequenced isolates shared >90% CP identity with transgenic CP sequences expressed by the p5001 inverted repeat expression cassette. These results demonstrate very high levels of field resistance to CBSD conferred by the p5001 RNAi construct at diverse agro-ecological locations, and across the vegetative cropping cycle.

2.
Virus Res ; 186: 61-75, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24291251

ABSTRACT

The greatest current threat to cassava in sub-Saharan Africa, is the continued expansion of plant virus pandemics being driven by super-abundant populations of the whitefly vector, Bemisia tabaci. To track the association of putatively genetically distinct populations of B. tabaci with pandemics of cassava mosaic disease (CMD) and cassava brown streak disease (CBSD), a comprehensive region-wide analysis examined the phylogenetic relationships and population genetics of 642 B. tabaci adults sampled from cassava in six countries of East and Central Africa, between 1997 and 2010, using a mitochondrial DNA cytochrome oxidase I marker (780 bases). Eight phylogenetically distinct groups were identified, including one, designated herein as 'East Africa 1' (EA1), not previously described. The three most frequently occurring groups comprised >95% of all samples. Among these, the Sub-Saharan Africa 2 (SSA2) group diverged by c. 8% from two SSA1 sub-groups (SSA1-SG1 and SSA1-SG2), which themselves were 1.9% divergent. During the 14-year study period, the group associated with the CMD pandemic expansion shifted from SSA2 to SSA1-SG1. Population genetics analyses of SSA1, using Tajima's D, Fu's Fs and Rojas' R2 statistics confirmed a temporal transition in SSA1 populations from neutrally evolving at the outset, to rapidly expanding from 2000 to 2003, then back to populations more at equilibrium after 2004. Based on available evidence, hybrid introgression appears to be the most parsimonious explanation for the switch from SSA2 to SSA1-SG1 in whitefly populations driving cassava virus pandemics in East and Central Africa.


Subject(s)
Gene Flow , Hemiptera/genetics , Insect Vectors/genetics , Manihot/parasitology , Phylogeny , Plant Diseases/parasitology , Africa, Central , Africa, Eastern , Animals , Begomovirus/genetics , Begomovirus/isolation & purification , Behavior, Animal , Electron Transport Complex IV/genetics , Feeding Behavior , Hemiptera/classification , Hemiptera/virology , Host-Parasite Interactions , Host-Pathogen Interactions , Insect Proteins/genetics , Insect Vectors/classification , Insect Vectors/virology , Manihot/virology , Phylogeography , Plant Diseases/virology , Spatio-Temporal Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...