Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 442: 129988, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36155299

ABSTRACT

Sulfidation and, more recently, nitriding have been recognized as promising modifications to enhance the selectivity of nanoscale zero-valent iron (nZVI) particles for trichloroethene (TCE). Herein, we investigated the performance of iron nitride (FexN) nanoparticles in the removal of a broader range of chlorinated ethenes (CEs), including tetrachloroethene (PCE), cis-1,2-dichloroethene (cis-DCE), and their mixture with TCE, and compared it to the performance of sulfidated nZVI (S-nZVI) prepared from the same precursor nZVI. Two distinct types of iron nitride (FexN) nanoparticles, containing γ'-Fe4N and ε-Fe2-3N phases, exhibited substantially higher PCE and cis-DCE dechlorination rates compared to S-nZVI. A similar effect was observed with a CE mixture, which was completely dechlorinated by both types of FexN nanoparticles within 10 days, whereas S-nZVI was able to remove only about half of the amount, most of which being TCE. Density functional theory calculations further revealed that the cleavage of the first C-Cl bond was the rate-limiting step for all CEs dechlorinated on the γ'-Fe4N(001) surface, with the reaction barriers of PCE and cis-DCE being 29.9, and 40.8 kJ mol-1, respectively. FexN nanoparticles proved to be highly effective in the remediation of PCE, cis-DCE, and mixed CE contamination.

2.
Environ Sci Technol ; 56(7): 4425-4436, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35263088

ABSTRACT

Nitriding has been used for decades to improve the corrosion resistance of iron and steel materials. Moreover, iron nitrides (FexN) have been shown to give an outstanding catalytic performance in a wide range of applications. We demonstrate that nitriding also substantially enhances the reactivity of zerovalent iron nanoparticles (nZVI) used for groundwater remediation, alongside reducing particle corrosion. Two different types of FexN nanoparticles were synthesized by passing gaseous NH3/N2 mixtures over pristine nZVI at elevated temperatures. The resulting particles were composed mostly of face-centered cubic (γ'-Fe4N) and hexagonal close-packed (ε-Fe2-3N) arrangements. Nitriding was found to increase the particles' water contact angle and surface availability of iron in reduced forms. The two types of FexN nanoparticles showed a 20- and 5-fold increase in the trichloroethylene (TCE) dechlorination rate, compared to pristine nZVI, and about a 3-fold reduction in the hydrogen evolution rate. This was related to a low energy barrier of 27.0 kJ mol-1 for the first dechlorination step of TCE on the γ'-Fe4N(001) surface, as revealed by density functional theory calculations with an implicit solvation model. TCE dechlorination experiments with aged particles showed that the γ'-Fe4N nanoparticles retained high reactivity even after three months of aging. This combined theoretical-experimental study shows that FexN nanoparticles represent a new and potentially important tool for TCE dechlorination.


Subject(s)
Groundwater , Nanoparticles , Trichloroethylene , Water Pollutants, Chemical , Iron
3.
J Hazard Mater ; 405: 124665, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33301974

ABSTRACT

In a number of laboratory studies, sulfidated nanoscale zero-valent iron (S-nZVI) particles showed increased reactivity, reducing capacity, and electron selectivity for Cr(VI) removal from contaminated waters. In our study, core-shell S-nZVI particles were successfully injected into an aquifer contaminated with Cr(VI) at a former chrome plating facility. S-nZVI migrated towards monitoring wells, resulting in a rapid decrease in Cr(VI) and Crtot concentrations and a long-term decrease in groundwater redox potential observed even 35 m downstream the nearest injection well. Characterization of materials recovered from the injection and monitoring wells confirmed the presence of nZVI particles, together with iron corrosion products. Chromium was identified on the surface of the recovered iron particles as Cr(III), and its occurrence was linked to the formation of insoluble chromium-iron (oxyhydr)oxides such as CrxFe(1-x)(OH)3(s). Injected S-nZVI particles formed aggregates, which were slowly transformed into iron (oxyhydr)oxides and carbonate green rust. Elevated contents of Fe0 were detected even several months after injection, indicating good S-nZVI longevity. The sulfide shell was gradually disintegrated and/or dissolved. Geochemical modelling confirmed the overall stability of the resulting Cr(III) phase at field conditions. This study demonstrates the applicability of S-nZVI for the remediation of a Cr(VI)-contaminated aquifer.

4.
ACS Appl Mater Interfaces ; 12(31): 35424-35434, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32640155

ABSTRACT

Zero-valent iron nanoparticles (nZVI) treated by reduced sulfur compounds (i.e., sulfidated nZVI, S-nZVI) have attracted increased attention as promising materials for environmental remediation. While the preparation of S-nZVI and its reactions with various groundwater contaminants such as trichloroethylene (TCE) were already a subject of several studies, nanoparticle synthesis procedures investigated so far were suited mainly for laboratory-scale preparation with only a limited possibility of easy and cost-effective large-scale production and FeS shell property control. This study presents a novel approach for synthesizing S-nZVI using commercially available nZVI particles that are treated with sodium sulfide in a concentrated slurry. This leads to S-nZVI particles that do not contain hazardous boron residues and can be easily prepared off-site. The resulting S-nZVI exhibits a core-shell structure where zero-valent iron is the dominant phase in the core, while the shell contains mostly amorphous iron sulfides. The average FeS shell thickness can be controlled by the applied sulfide concentration. Up to a 12-fold increase in the TCE removal and a 7-fold increase in the electron efficiency were observed upon amending nZVI with sulfide. Although the FeS shell thickness correlated with surface-area-normalized TCE removal rates, sulfidation negatively impacted the particle surface area, resulting in an optimal FeS shell thickness of approximately 7.3 nm. This corresponded to a particle S/Fe mass ratio of 0.0195. At all sulfide doses, the TCE degradation products were only fully dechlorinated hydrocarbons. Moreover, a nearly 100% chlorine balance was found at the end of the experiments, further confirming complete TCE degradation and the absence of chlorinated transformation products. The newly synthesized S-nZVI particles thus represent a promising remedial agent applicable at sites contaminated with TCE.

5.
Biotechnol Lett ; 36(4): 775-81, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24243232

ABSTRACT

Whole whey hydrolyzed by Alcalase (WWH) was tested as a complex nitrogen source for the production of poly(3-hydroxybutyrate) (PHB) from waste frying oils by Cupriavidus necator H16. Addition of WWH (10 % (v/v) of cultivation media) supported the growth and PHB accumulation; PHB yields in Erlenmeyer flasks were more than 3.5-fold higher than in control cultivations. The positive influence of WWH on PHB production was confirmed in experiments performed in laboratory fermentor. C. necator cultivated with WWH produced 28.1 g PHB l(-1) resulting in a very high product yield coefficient of 0.94 g PHB per g oil. Since PHB yields were ~40 % higher than in the control cultivation, WWH can be considered as an excellent inexpensive nitrogen source for PHB production by C. necator.


Subject(s)
Culture Media/chemistry , Cupriavidus necator/growth & development , Cupriavidus necator/metabolism , Hydroxybutyrates/metabolism , Milk Proteins/metabolism , Nitrogen/metabolism , Polyesters/metabolism , Subtilisins/metabolism , Hydrolysis , Whey Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...