Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Comp Neurol ; 529(8): 1810-1829, 2021 06.
Article in English | MEDLINE | ID: mdl-33089503

ABSTRACT

Acetylcholine acts as a neurotransmitter/neuromodulator of many central nervous system processes such as learning and memory, attention, motor control, and sensory processing. The present study describes the spatial distribution of cholinergic neurons throughout the brain of the weakly electric fish, Apteronotus leptorhynchus, using in situ hybridization of choline acetyltransferase mRNA. Distinct groups of cholinergic cells were observed in the telencephalon, diencephalon, mesencephalon, and hindbrain. These included cholinergic cell groups typically identified in other vertebrate brains, for example, motor neurons. Using both in vitro and ex vivo neuronal tracing methods, we identified two new cholinergic connections leading to novel hypotheses on their functional significance. Projections to the nucleus praeeminentialis (nP) arise from isthmic nuclei, possibly including the nucleus lateralis valvulae (nLV) and the isthmic nucleus (nI). The nP is a central component of all electrosensory feedback pathways to the electrosensory lateral line lobe (ELL). We have previously shown that some neurons in nP, TS, and tectum express muscarinic receptors. We hypothesize that, based on nLV/nI cell responses in other teleosts and isthmic connectivity in A. leptorhynchus, the isthmic connections to nP, TS, and tectum modulate responses to electrosensory and/or visual motion and, in particular, to looming/receding stimuli. In addition, we found that the octavolateral efferent (OE) nucleus is the likely source of cholinergic fibers innervating the ELL. In other teleosts, OE inhibits octavolateral hair cells during locomotion. In gymnotiform fish, OE may also act on the first central processing stage and, we hypothesize, implement corollary discharge modulation of electrosensory processing during locomotion.


Subject(s)
Brain/cytology , Cholinergic Neurons/cytology , Electric Fish/anatomy & histology , Electric Fish/physiology , Animals , Brain/physiology , Cholinergic Neurons/physiology
2.
Sci Rep ; 10(1): 5871, 2020 04 03.
Article in English | MEDLINE | ID: mdl-32245993

ABSTRACT

The amygdala facilitates odor driven behavioral responses by enhancing the saliency of olfactory signals. Before this processing, olfactory input is refined through the feedback provided by amygdala corticofugal projection (ACPs). Although the saliency of odor signals is subject to developmental changes, the stage at which this cortical feedback first occurs is not known. Using optogenetically-assisted intracellular recordings of the mouse cortical amygdala, we identified changes in the electrophysiological properties of ACPs at different developmental stages. These were consistent with a decrease in neuronal excitability and an increase in the amount of incoming accessory olfactory bulb (AOB) inputs, as confirmed by estimates of release probability, quantal size and contact number at the AOB-to-ACP synapse. Moreover, the proportion of ACPs activated in response to odors was dependent on the stage of development as revealed by c-Fos expression analysis. These results update standard accounts of how the amygdala processes social signals by emphasizing the occurrence of critical periods in the development of its sensory gating functions.


Subject(s)
Amygdala/physiology , Neural Pathways/physiology , Smell/physiology , Animals , Electrophysiological Phenomena , Feedback, Physiological/physiology , Female , Male , Mice , Odorants , Olfactory Bulb/physiology , Optogenetics , Synapses/physiology
3.
Front Cell Neurosci ; 12: 295, 2018.
Article in English | MEDLINE | ID: mdl-30233329

ABSTRACT

Voltage-gated calcium (Cav) channels are a prerequisite for signal transmission at the first olfactory sensory neuron (OSN) synapse within the glomeruli of the main olfactory bulb (MOB). We showed previously that the N-type Cav channel subunit Cav2.2 is present in the vast majority of glomeruli and plays a central role in presynaptic transmitter release. Here, we identify a distinct subset of glomeruli in the MOB of adult mice that is characterized by expression of the P/Q-type channel subunit Cav2.1. Immunolocalization shows that Cav2.1+ glomeruli reside predominantly in the medial and dorsal MOB, and in the vicinity of the necklace glomerular region close to the accessory olfactory bulb. Few glomeruli are detected on the ventral and lateral MOB. Cav2.1 labeling in glomeruli colocalizes with the presynaptic marker vGlut2 in the axon terminals of OSNs. Electron microscopy shows that Cav2.1+ presynaptic boutons establish characteristic asymmetrical synapses with the dendrites of second-order neurons in the glomerular neuropil. Cav2.1+ glomeruli receive axonal input from OSNs that express molecules of canonical OSNs: olfactory marker protein, the ion channel Cnga2, and the phosphodiesterase Pde4a. In the main olfactory epithelium, Cav2.1 labels a distinct subpopulation of OSNs whose distribution mirrors the topography of the MOB glomeruli, that shows the same molecular signature, and is already present at birth. Together, these experiments identify a unique Cav2.1+ multiglomerular domain in the MOB that may form a previously unrecognized olfactory subsystem distinct from other groups of necklace glomeruli that rely on cGMP signaling mechanisms.

4.
eNeuro ; 5(3)2018.
Article in English | MEDLINE | ID: mdl-29911171

ABSTRACT

Interconnections between the olfactory bulb and the amygdala are a major pathway for triggering strong behavioral responses to a variety of odorants. However, while this broad mapping has been established, the patterns of amygdala feedback connectivity and the influence on olfactory circuitry remain unknown. Here, using a combination of neuronal tracing approaches, we dissect the connectivity of a cortical amygdala [posteromedial cortical nucleus (PmCo)] feedback circuit innervating the mouse accessory olfactory bulb. Optogenetic activation of PmCo feedback mainly results in feedforward mitral cell (MC) inhibition through direct excitation of GABAergic granule cells. In addition, LED-driven activity of corticofugal afferents increases the gain of MC responses to olfactory nerve stimulation. Thus, through corticofugal pathways, the PmCo likely regulates primary olfactory and social odor processing.


Subject(s)
Amygdala/physiology , Neurons/physiology , Olfactory Bulb/physiology , Amygdala/cytology , Animals , Female , GABAergic Neurons/physiology , Interneurons/physiology , Male , Membrane Potentials , Mice , Mice, Transgenic , Neuroanatomical Tract-Tracing Techniques , Olfactory Bulb/cytology , Olfactory Pathways/cytology , Olfactory Pathways/physiology
5.
Neuron ; 96(2): 387-401.e6, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-29024662

ABSTRACT

Because molecular mechanisms underlying refractory focal epilepsy are poorly defined, we performed transcriptome analysis on human epileptogenic tissue. Compared with controls, expression of Circadian Locomotor Output Cycles Kaput (CLOCK) is decreased in epileptogenic tissue. To define the function of CLOCK, we generated and tested the Emx-Cre; Clockflox/flox and PV-Cre; Clockflox/flox mouse lines with targeted deletions of the Clock gene in excitatory and parvalbumin (PV)-expressing inhibitory neurons, respectively. The Emx-Cre; Clockflox/flox mouse line alone has decreased seizure thresholds, but no laminar or dendritic defects in the cortex. However, excitatory neurons from the Emx-Cre; Clockflox/flox mouse have spontaneous epileptiform discharges. Both neurons from Emx-Cre; Clockflox/flox mouse and human epileptogenic tissue exhibit decreased spontaneous inhibitory postsynaptic currents. Finally, video-EEG of Emx-Cre; Clockflox/flox mice reveals epileptiform discharges during sleep and also seizures arising from sleep. Altogether, these data show that disruption of CLOCK alters cortical circuits and may lead to generation of focal epilepsy.


Subject(s)
Brain/metabolism , CLOCK Proteins/deficiency , CLOCK Proteins/genetics , Epilepsies, Partial/genetics , Epilepsies, Partial/metabolism , Nerve Net/metabolism , Animals , Brain/pathology , Cells, Cultured , Epilepsies, Partial/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Net/pathology , Prospective Studies
6.
Front Neuroanat ; 11: 44, 2017.
Article in English | MEDLINE | ID: mdl-28588456

ABSTRACT

The vomeronasal system (VNS) is specialized in the detection of salient chemical cues triggering social and neuroendocrine responses. Such responses are not always stereotyped, instead, they vary depending on age, sex, and reproductive state, yet the mechanisms underlying this variability are unclear. Here, by analyzing neuronal survival in the first processing nucleus of the VNS, namely the accessory olfactory bulb (AOB), through multiple bromodeoxyuridine birthdating protocols, we show that exposure of female mice to male soiled bedding material affects the integration of newborn granule interneurons mainly after puberty. This effect is induced by urine compounds produced by mature males, as bedding soiled by younger males was ineffective. The granule cell increase induced by mature male odor exposure is not prevented by pre-pubertal ovariectomy, indicating a lesser role of circulating estrogens in this plasticity. Interestingly, the intake of adult male urine-derived cues by the female vomeronasal organ increases during puberty, suggesting a direct correlation between sensory activity and AOB neuronal plasticity. Thus, as odor exposure increases the responses of newly born cells to the experienced stimuli, the addition of new GABAergic inhibitory cells to the AOB might contribute to the shaping of vomeronasal processing of male cues after puberty. Consistently, only after puberty, female mice are capable to discriminate individual male odors through the VNS.

7.
Elife ; 62017 03 13.
Article in English | MEDLINE | ID: mdl-28244870

ABSTRACT

The medial subnucleus of the amygdala (MeA) plays a central role in processing sensory cues required for innate behaviors. However, whether there is a link between developmental programs and the emergence of inborn behaviors remains unknown. Our previous studies revealed that the telencephalic preoptic area (POA) embryonic niche is a novel source of MeA destined progenitors. Here, we show that the POA is comprised of distinct progenitor pools complementarily marked by the transcription factors Dbx1 and Foxp2. As determined by molecular and electrophysiological criteria this embryonic parcellation predicts postnatal MeA inhibitory neuronal subtype identity. We further find that Dbx1-derived and Foxp2+ cells in the MeA are differentially activated in response to innate behavioral cues in a sex-specific manner. Thus, developmental transcription factor expression is predictive of MeA neuronal identity and sex-specific neuronal responses, providing a potential developmental logic for how innate behaviors could be processed by different MeA neuronal subtypes.


Subject(s)
Corticomedial Nuclear Complex/embryology , Corticomedial Nuclear Complex/physiology , Forkhead Transcription Factors/analysis , Homeodomain Proteins/analysis , Instinct , Neurons/physiology , Repressor Proteins/analysis , Animals , Cues , Gene Expression Profiling , Gene Expression Regulation, Developmental , Mice , Sex Factors
8.
Neural Dev ; 11(1): 12, 2016 05 21.
Article in English | MEDLINE | ID: mdl-27209204

ABSTRACT

BACKGROUND: Neurons in the hypothalamus function to regulate the state of the animal during both learned and innate behaviors, and alterations in hypothalamic development may contribute to pathological conditions such as anxiety, depression or obesity. Despite many studies of hypothalamic development and function, the link between embryonic development and innate behaviors remains unexplored. Here, focusing on the embryonically expressed homeodomain-containing gene Developing Brain Homeobox 1 (Dbx1), we explored the relationship between embryonic lineage, post-natal neuronal identity and lineage-specific responses to innate cues. We found that Dbx1 is widely expressed across multiple developing hypothalamic subdomains. Using standard and inducible fate-mapping to trace the Dbx1-derived neurons, we identified their contribution to specific neuronal subtypes across hypothalamic nuclei and further mapped their activation patterns in response to a series of well-defined innate behaviors. RESULTS: Dbx1-derived neurons occupy multiple postnatal hypothalamic nuclei including the lateral hypothalamus (LH), arcuate nucleus (Arc) and the ventral medial hypothalamus (VMH). Within these nuclei, Dbx1 (+) progenitors generate a large proportion of the Pmch-, Nesfatin-, Cart-, Hcrt-, Agrp- and ERα-expressing neuronal populations, and to a lesser extent the Pomc-, TH- and Aromatase-expressing populations. Inducible fate-mapping reveals distinct temporal windows for development of the Dbx1-derived LH and Arc populations, with Agrp(+) and Cart(+) populations in the Arc arising early (E7.5-E9.5), while Pmch(+) and Hcrt(+) populations in the LH derived from progenitors expressing Dbx1 later (E9.5-E11.5). Moreover, as revealed by c-Fos labeling, Dbx1-derived cells in male and female LH, Arc and VMH are responsive during mating and aggression. In contrast, Dbx1-lineage cells in the Arc and LH have a broader behavioral tuning, which includes responding to fasting and predator odor cues. CONCLUSION: We define a novel fate map of the hypothalamus with respect to Dbx1 expression in hypothalamic progenitor zones. We demonstrate that in a temporally regulated manner, Dbx1-derived neurons contribute to molecularly distinct neuronal populations in the LH, Arc and VMH that have been implicated in a variety of hypothalamic-driven behaviors. Consistent with this, Dbx1-derived neurons in the LH, Arc and VMH are activated during stress and other innate behavioral responses, implicating their involvement in these diverse behaviors.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Behavior, Animal , Homeodomain Proteins/metabolism , Hypothalamic Area, Lateral/metabolism , Neurons/cytology , Neurons/metabolism , Ventromedial Hypothalamic Nucleus/metabolism , Aggression/physiology , Animals , Arcuate Nucleus of Hypothalamus/cytology , Avoidance Learning/physiology , Female , Hypothalamic Area, Lateral/cytology , Male , Mice , Sexual Behavior, Animal/physiology , Ventromedial Hypothalamic Nucleus/cytology
9.
BMC Biol ; 13: 104, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26621367

ABSTRACT

BACKGROUND: The hormonal state during the estrus cycle or pregnancy produces alterations on female olfactory perception that are accompanied by specific maternal behaviors, but it is unclear how sex hormones act on the olfactory system to enable these sensory changes. RESULTS: Herein, we show that the production of neuronal progenitors is stimulated in the vomeronasal organ (VNO) epithelium of female mice during a late phase of pregnancy. Using a wide range of molecular markers that cover the whole VNO cell maturation process in combination with Ca(2+) imaging in early postmitotic neurons, we show that newly generated VNO cells adopt morphological and functional properties of mature sensory neurons. A fraction of these newly generated cells project their axons to the olfactory forebrain, extend dendrites that contact the VNO lumen, and can detect peptides and urinary proteins shown to contain pheromone activity. High-throughput RNA-sequencing reveals concomitant differences in gene expression in the VNO transcriptomes of pregnant females. These include relative increases in expression of 20 vomeronasal receptors, of which 17 belong to the V1R subfamily, and may therefore be considered as candidate receptors for mediating maternal behaviors. We identify the expression of several hormone receptors in the VNO of which estrogen receptor α (Esr1) is directly localized to neural progenitors. Administration of sustained high levels of estrogen, but not progesterone, is sufficient to stimulate vomeronasal progenitor cell proliferation in the VNO epithelium. CONCLUSIONS: Peripheral olfactory neurogenesis driven by estrogen may contribute to modulate sensory perception and adaptive VNO-dependent behaviors during pregnancy and early motherhood.


Subject(s)
Estrogen Receptor alpha/metabolism , Estrogens/metabolism , Neurogenesis , Vomeronasal Organ/physiology , Animals , Cell Proliferation , Female , Mice , Neural Stem Cells/physiology , Pregnancy , Vomeronasal Organ/growth & development
10.
Neuron ; 86(2): 403-16, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25864637

ABSTRACT

The hypothalamus integrates information required for the production of a variety of innate behaviors such as feeding, mating, aggression, and predator avoidance. Despite an extensive knowledge of hypothalamic function, how embryonic genetic programs specify circuits that regulate these behaviors remains unknown. Here, we find that in the hypothalamus the developmentally regulated homeodomain-containing transcription factor Dbx1 is required for the generation of specific subclasses of neurons within the lateral hypothalamic area/zona incerta (LH) and the arcuate (Arc) nucleus. Consistent with this specific developmental role, Dbx1 hypothalamic-specific conditional-knockout mice display attenuated responses to predator odor and feeding stressors but do not display deficits in other innate behaviors such as mating or conspecific aggression. Thus, activity of a single developmentally regulated gene, Dbx1, is a shared requirement for the specification of hypothalamic nuclei governing a subset of innate behaviors. VIDEO ABSTRACT.


Subject(s)
Behavior, Animal/physiology , Homeodomain Proteins/genetics , Hypothalamus/embryology , Hypothalamus/physiology , Instinct , Animals , Body Patterning/genetics , Feeding Behavior/physiology , Female , Gene Expression , Homeodomain Proteins/metabolism , Hypothalamus/cytology , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Knockout , Neurons/metabolism , Neuropeptides/metabolism , Orexins
11.
Development ; 141(21): 4065-75, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25336736

ABSTRACT

In the adult brain, active stem cells are a subset of astrocytes residing in the subventricular zone (SVZ) and the dentate gyrus (DG) of the hippocampus. Whether quiescent neuronal progenitors occur in other brain regions is unclear. Here, we describe a novel neurogenic system in the external capsule and lateral striatum (EC-LS) of the juvenile guinea pig that is quiescent at birth but becomes active around weaning. Activation of neurogenesis in this region was accompanied by the emergence of a neurogenic-like niche in the ventral EC characterized by chains of neuroblasts, intermediate-like progenitors and glial cells expressing markers of immature astrocytes. Like neurogenic astrocytes of the SVZ and DG, these latter cells showed a slow rate of proliferation and retained BrdU labeling for up to 65 days, suggesting that they are the primary progenitors of the EC-LS neurogenic system. Injections of GFP-tagged lentiviral vectors into the SVZ and the EC-LS of newborn animals confirmed that new LS neuroblasts originate from the activation of local progenitors and further supported their astroglial nature. Newborn EC-LS neurons existed transiently and did not contribute to neuronal addition or replacement. Nevertheless, they expressed Sp8 and showed strong tropism for white matter tracts, wherein they acquired complex morphologies. For these reasons, we propose that EC-LS neuroblasts represent a novel striatal cell type, possibly related to those populations of transient interneurons that regulate the development of fiber tracts during embryonic life.


Subject(s)
Neural Stem Cells/cytology , Neurogenesis/physiology , Neurons/cytology , Neurons/metabolism , Animals , Female , Guinea Pigs , Male , Neural Stem Cells/metabolism , Neurogenesis/genetics , Tissue Culture Techniques
12.
BMC Biol ; 12: 31, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24886577

ABSTRACT

BACKGROUND: Optimal reproductive fitness is essential for the biological success and survival of species. The vomeronasal organ is strongly implicated in the display of sexual and reproductive behaviors in female mice, yet the roles that apical and basal vomeronasal neuron populations play in controlling these gender-specific behaviors remain largely unclear. RESULTS: To dissect the neural pathways underlying these functions, we genetically inactivated the basal vomeronasal organ layer using conditional, cell-specific ablation of the G protein Gαo. Female mice mutant for Gαo show severe alterations in sexual and reproductive behaviors, timing of puberty onset, and estrous cycle. These mutant mice are insensitive to reproductive facilitation stimulated by male pheromones that accelerate puberty and induce ovulation. Gαo-mutant females exhibit a striking reduction in sexual receptivity or lordosis behavior to males, but gender discrimination seems to be intact. These mice also show a loss in male scent preference, which requires a learned association for volatile olfactory signals with other nonvolatile ownership signals that are contained in the high molecular weight fraction of male urine. Thus, Gαo impacts on both instinctive and learned social responses to pheromones. CONCLUSIONS: These results highlight that sensory neurons of the Gαo-expressing vomeronasal subsystem, together with the receptors they express and the molecular cues they detect, control a wide range of fundamental mating and reproductive behaviors in female mice.


Subject(s)
GTP-Binding Proteins/metabolism , Pheromones/pharmacology , Reproduction/drug effects , Sexual Behavior, Animal/drug effects , Animals , Central Nervous System/drug effects , Central Nervous System/metabolism , Central Nervous System/pathology , Choice Behavior/drug effects , Estrous Cycle/drug effects , Female , Gene Deletion , Genes, Reporter , Gonadal Steroid Hormones/metabolism , Green Fluorescent Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Ovary/pathology , Posture , Sexual Maturation/drug effects , Smell/drug effects
13.
Front Neurosci ; 8: 102, 2014.
Article in English | MEDLINE | ID: mdl-24847202

ABSTRACT

So far most studies on adult neurogenesis aimed to unravel mechanisms and molecules regulating the integration of newly generated neurons in the mature brain parenchyma. The exceedingly abundant amount of results that followed, rather than being beneficial in the perspective of brain repair, provided a clear evidence that adult neurogenesis constitutes a necessary feature to the correct functioning of the hosting brain regions. In particular, the rodent olfactory system represents a privileged model to study how neuronal plasticity and neurogenesis interact with sensory functions. Until recently, the vomeronasal system (VNS) has been commonly described as being specialized in the detection of innate chemosignals. Accordingly, its circuitry has been considered necessarily stable, if not hard-wired, in order to allow stereotyped behavioral responses. However, both first and second order projections of the rodent VNS continuously change their synaptic connectivity due to ongoing postnatal and adult neurogenesis. How the functional integrity of a neuronal circuit is maintained while newborn neurons are continuously added-or lost-is a fundamental question for both basic and applied neuroscience. The VNS is proposed as an alternative model to answer such question. Hereby the underlying motivations will be reviewed.

14.
J Neurosci ; 34(15): 5121-33, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24719092

ABSTRACT

The mouse vomeronasal organ (VNO) has a pivotal role in chemical communication. The vomeronasal sensory neuroepithelium consists of distinct populations of vomeronasal sensory neurons (VSNs). A subset of VSNs, with cell bodies in the basal part of the basal layer, coexpress Vmn2r G-protein-coupled receptor genes with H2-Mv genes, a family of nine nonclassical class I major histocompatibility complex genes. The in vivo, physiological roles of the H2-Mv gene family remain mysterious more than a decade after the discovery of combinatorial H2-Mv gene expression in VSNs. Here, we have taken a genetic approach and have deleted the 530 kb cluster of H2-Mv genes in the mouse germline by chromosome engineering. Homozygous mutant mice (ΔH2Mv mice) are viable and fertile. There are no major anatomical defects in their VNO and accessory olfactory bulb (AOB). Their VSNs can be stimulated with chemostimuli (peptides and proteins) to the same maximum responses as VSNs of wild-type mice, but require much higher concentrations. This physiological phenotype is displayed at the single-cell level and is cell autonomous: single V2rf2-expressing VSNs, which normally coexpress H2-Mv genes, display a decreased sensitivity to a peptide ligand in ΔH2Mv mice, whereas single V2r1b-expressing VSNs, which do not coexpress H2-Mv genes, show normal sensitivity to a peptide ligand in ΔH2Mv mice. Consistent with the greatly decreased VSN sensitivity, ΔH2Mv mice display pronounced deficits in aggressive and sexual behaviors. Thus, H2-Mv genes are not absolutely essential for the generation of physiological responses, but are required for ultrasensitive chemodetection by a subset of VSNs.


Subject(s)
Chemoreceptor Cells/metabolism , Genes, MHC Class I/genetics , Smell/genetics , Vomeronasal Organ/metabolism , Animals , Calcium/metabolism , Cell Line , Chemoreceptor Cells/physiology , Female , Gene Deletion , Germ-Line Mutation , Homozygote , Male , Mice , Mice, Inbred C57BL , Phenotype , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Sensory Thresholds , Sexual Behavior, Animal , Vomeronasal Organ/cytology , Vomeronasal Organ/physiology
16.
Front Neurosci ; 5: 113, 2011.
Article in English | MEDLINE | ID: mdl-21994486

ABSTRACT

In the olfactory bulb of adult rodents, local interneurons are constantly replaced by immature precursors derived from the subventricular zone. Whether any olfactory sensory process specifically relies on this cell renewal remains largely unclear. By using the well known model of mating-induced imprinting to avoid pregnancy block, which requires accessory olfactory bulb (AOB) function, we demonstrate that this olfactory memory formation critically depends on the presence of newborn granule neurons in this brain region. We show that, in adult female mice, exposure to the male urine compounds involved in mate recognition increases the number of new granule cells surviving in the AOB. This process is modulated by male signals sensed through the vomeronasal organ and, in turn, changes the activity of the downstream amygdaloid and hypothalamic nuclei involved in the pregnancy block response. Chemical depletion of newly generated bulbar interneurons causes strong impairment in mate recognition, thus resulting in a high pregnancy failure rate to familiar mating male odors. Taken together, our results indicate that adult neurogenesis is essential for specific brain functions such as persistent odor learning and mate recognition.

SELECTION OF CITATIONS
SEARCH DETAIL
...