Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Drugs ; 9(9): 1607-1624, 2011.
Article in English | MEDLINE | ID: mdl-22131961

ABSTRACT

Chlorella sorokiniana has been selected for lutein production, after a screening of thirteen species of microalgae, since it showed both a high content in this carotenoid and a high growth rate. The effects of several nutritional and environmental factors on cell growth and lutein accumulation have been studied. Maximal specific growth rate and lutein content were attained at 690 µmol photons m(-2) s(-1), 28 °C, 2 mM NaCl, 40 mM nitrate and under mixotrophic conditions. In general, optimal conditions for the growth of this strain also lead to maximal lutein productivity. High lutein yielding mutants of C. sorokiniana have been obtained by random mutagenesis, using N-methyl-N'-nitro-nitrosoguanidine (MNNG) as a mutagen and selecting mutants by their resistance to the inhibitors of the carotenogenic pathway nicotine and norflurazon. Among the mutants resistant to the herbicides, those exhibiting both high content in lutein and high growth rate were chosen. Several mutants exhibited higher contents in this carotenoid than the wild type, showing, in addition, either a similar or higher growth rate than the latter strain. The mutant MR-16 exhibited a 2.0-fold higher volumetric lutein content than that of the wild type, attaining values of 42.0 mg L(-1) and mutants DMR-5 and DMR-8 attained a lutein cellular content of 7.0 mg g(-1) dry weight. The high lutein yield exhibited by C. sorokiniana makes this microalga an excellent candidate for the production of this commercially interesting pigment.


Subject(s)
Chlorella/metabolism , Lutein/biosynthesis , Chlorella/growth & development , Culture Media , Glucose/pharmacology , Mutagenesis , Nitrogen/pharmacology , Temperature
2.
Fungal Genet Biol ; 41(2): 168-80, 2004 Feb.
Article in English | MEDLINE | ID: mdl-14732263

ABSTRACT

Introduction of plasmids in Phycomyces blakesleeanus caused extensive changes in the exogenous DNA and in the resident genome. Plasmids with a bacterial gene for geneticin resistance under a Phycomyces promoter were either injected into immature sporangia or incubated with spheroplasts. An improved method produced about one viable spheroplast per cell. Colonies resistant to geneticin were rare and only about 0.1% of their spores grew in the presence of geneticin. The transformation frequency was very low, < or =1 transformed colony per million spheroplasts or per microg DNA. Few nuclei in the transformants contained exogenous DNA, as shown by a selective procedure that sampled single nuclei from heterokaryons. The exogenous DNA was not integrated into the genome and no stable transformants were obtained. The plasmids were replicated in the recipient cells, but their DNA sequences were modified by deletions and rearrangements and the transformed phenotype was eventually lost. The spores developed in injected sporangia were often inviable; a genetic test showed that spore death was caused by impaired nuclear proliferation and induction of lethal mutations. About one-fourth of the viable spores from injected sporangia formed abnormal colonies with obvious changes in shape, texture, or color. The abnormalities that could be investigated were due to dominant mutations. The results indicate that incoming DNA is not only attacked, but signals a situation of stress that leads to increased mutation and nuclear and cellular death.


Subject(s)
Genes, Fungal , Mutation , Phycomyces/genetics , Plasmids , Transformation, Genetic , DNA Replication , Drug Resistance, Bacterial/genetics , Genome, Fungal , Gentamicins/pharmacology , Mitosis/genetics , Phycomyces/growth & development , Promoter Regions, Genetic , Spores, Fungal/genetics , Spores, Fungal/growth & development
3.
Appl Environ Microbiol ; 69(7): 4043-8, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12839780

ABSTRACT

The industrial production of beta-carotene with the zygomycete Blakeslea trispora involves the joint cultivation of mycelia of opposite sex in the presence of beta-ionone and other chemical activators. We have obtained improved strains by mutation and heterokaryosis. We chose wild strains on the basis of their growth and carotene content in single and mated cultures. Following exposure of their spores to N-methyl-N'-nitro-N-nitrosoguanidine, we obtained high-carotene mutants, which were more productive than their parents but similar to them in having beta-carotene as the main product. Further increases in carotene content were obtained after a new round of mutagenesis in one of the mutants. The production was shifted to lycopene in cultures incubated in the presence of nicotine and in lycopene-rich mutants derived from the wild strains. The highest production levels were achieved in intersexual heterokaryons, which contained mutant nuclei of opposite sex. These contained up to 39 mg of beta-carotene or 15 mg of lycopene per g (dry mass) under standard laboratory conditions in which the original wild strains contained about 0.3 mg of beta-carotene per g (dry mass). Beta-ionone did not increase the carotene content of these strains. Not all wild strains lent themselves to these improvements, either because they produced few mutants or because they did not increase their carotene production in mated cultures.


Subject(s)
Carotenoids/biosynthesis , Crosses, Genetic , Fungi/genetics , Heterozygote , Mutation , beta Carotene/biosynthesis , Fungi/growth & development , Industrial Microbiology/methods , Lycopene , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...