Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 56(44): 13596-13600, 2017 10 23.
Article in English | MEDLINE | ID: mdl-28841767

ABSTRACT

Artificial metalloenzymes (ArMs) are hybrid catalysts that offer a unique opportunity to combine the superior performance of natural protein structures with the unnatural reactivity of transition-metal catalytic centers. Therefore, they provide the prospect of highly selective and active catalytic chemical conversions for which natural enzymes are unavailable. Herein, we show how by rationally combining robust site-specific phosphine bioconjugation methods and a lipid-binding protein (SCP-2L), an artificial rhodium hydroformylase was developed that displays remarkable activities and selectivities for the biphasic production of long-chain linear aldehydes under benign aqueous conditions. Overall, this study demonstrates that judiciously chosen protein-binding scaffolds can be adapted to obtain metalloenzymes that provide the reactivity of the introduced metal center combined with specifically intended product selectivity.


Subject(s)
Aldehydes/chemistry , Biomimetic Materials/chemistry , Metalloproteins/chemistry , Peroxisomal Multifunctional Protein-2/chemistry , Phosphines/chemistry , Rhodium/chemistry , Catalysis , Humans , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...