Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 14: 1177421, 2023.
Article in English | MEDLINE | ID: mdl-37448960

ABSTRACT

The 3Rs principles-reduction, refinement, replacement-are at the core of preclinical research within drug discovery, which still relies to a great extent on the availability of models of disease in animals. Minimizing their distress, reducing their number as well as searching for means to replace them in experimental studies are constant objectives in this area. Due to its non-invasive character in vivo imaging supports these efforts by enabling repeated longitudinal assessments in each animal which serves as its own control, thereby enabling to reduce considerably the animal utilization in the experiments. The repetitive monitoring of pathology progression and the effects of therapy becomes feasible by assessment of quantitative biomarkers. Moreover, imaging has translational prospects by facilitating the comparison of studies performed in small rodents and humans. Also, learnings from the clinic may be potentially back-translated to preclinical settings and therefore contribute to refining animal investigations. By concentrating on activities around the application of magnetic resonance imaging (MRI) and ultrasound elastography to small rodent models of disease, we aim to illustrate how in vivo imaging contributes primarily to reduction and refinement in the context of pharmacological research.

2.
Am J Pathol ; 193(2): 161-181, 2023 02.
Article in English | MEDLINE | ID: mdl-36410420

ABSTRACT

The roof plate-specific spondin-leucine-rich repeat-containing G-protein coupled receptor 4/5 (LGR4/5)-zinc and ring finger 3 (ZNRF3)/ring finger protein 43 (RNF43) module is a master regulator of hepatic Wnt/ß-catenin signaling and metabolic zonation. However, its impact on nonalcoholic fatty liver disease (NAFLD) remains unclear. The current study investigated whether hepatic epithelial cell-specific loss of the Wnt/ß-catenin modulator Lgr4/5 promoted NAFLD. The 3- and 6-month-old mice with hepatic epithelial cell-specific deletion of both receptors Lgr4/5 (Lgr4/5dLKO) were compared with control mice fed with normal diet (ND) or high-fat diet (HFD). Six-month-old HFD-fed Lgr4/5dLKO mice developed hepatic steatosis and fibrosis but the control mice did not. Serum cholesterol-high-density lipoprotein and total cholesterol levels in 3- and 6-month-old HFD-fed Lgr4/5dLKO mice were decreased compared with those in control mice. An ex vivo primary hepatocyte culture assay and a comprehensive bile acid (BA) characterization in liver, plasma, bile, and feces demonstrated that ND-fed Lgr4/5dLKO mice had impaired BA secretion, predisposing them to develop cholestatic characteristics. Lipidome and RNA-sequencing analyses demonstrated severe alterations in several lipid species and pathways controlling lipid metabolism in the livers of Lgr4/5dLKO mice. In conclusion, loss of hepatic Wnt/ß-catenin activity by Lgr4/5 deletion led to loss of BA secretion, cholestatic features, altered lipid homeostasis, and deregulation of lipoprotein pathways. Both BA and intrinsic lipid alterations contributed to the onset of NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/metabolism , beta Catenin/metabolism , Leucine/metabolism , Liver/metabolism , Cholesterol/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Mice, Inbred C57BL , Diet, High-Fat/adverse effects
3.
Sci Rep ; 12(1): 157, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997110

ABSTRACT

The objective of this work was to assess the consequences of repeated intra-articular injection of monosodium urate (MSU) crystals with inflammasome priming by lipopolysaccharide (LPS) in order to simulate recurrent bouts of gout in rats. Translational imaging was applied to simultaneously detect and quantify injury in different areas of the knee joint. MSU/LPS induced joint swelling, synovial membrane thickening, fibrosis of the infrapatellar fat pad, tidemark breaching, and cartilage invasion by inflammatory cells. A higher sensitivity to mechanical stimulus was detected in paws of limbs receiving MSU/LPS compared to saline-injected limbs. In MSU/LPS-challenged joints, magnetic resonance imaging (MRI) revealed increased synovial fluid volume in the posterior region of the joint, alterations in the infrapatellar fat pad reflecting a progressive decrease of fat volume and fibrosis formation, and a significant increase in the relaxation time T2 in femoral cartilage, consistent with a reduction of proteoglycan content. MRI also showed cyst formation in the tibia, femur remodeling, and T2 reductions in extensor muscles consistent with fibrosis development. Repeated intra-articular MSU/LPS injections in the rat knee joint induced pathology in multiple tissues and may be a useful means to investigate the relationship between urate crystal deposition and the development of degenerative joint disease.


Subject(s)
Arthritis, Gouty/diagnostic imaging , Joints/diagnostic imaging , Magnetic Resonance Imaging , Uric Acid , Animals , Arthritis, Gouty/chemically induced , Arthritis, Gouty/metabolism , Arthritis, Gouty/pathology , Biopsy , Crystallization , Cytokines/metabolism , Disease Models, Animal , Disease Progression , Female , Inflammation Mediators/metabolism , Injections, Intra-Articular , Joints/metabolism , Joints/pathology , Lipopolysaccharides , Predictive Value of Tests , Rats , Rats, Inbred Lew , Synovial Fluid/metabolism , Time Factors , Translational Research, Biomedical , X-Ray Microtomography
4.
iScience ; 24(12): 103434, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34877494

ABSTRACT

Inflammatory responses are crucial for regeneration following peripheral nerve injury (PNI). PNI triggers inflammatory responses at the site of injury. The DNA-sensing receptor cyclic GMP-AMP synthase (cGAS) and its downstream effector stimulator of interferon genes (STING) sense foreign and self-DNA and trigger type I interferon (IFN) immune responses. We demonstrate here that following PNI, the cGAS/STING pathway is upregulated in the sciatic nerve of naive rats and dysregulated in old rats. In a nerve crush mouse model where STING is knocked out, myelin content in sciatic nerve is increased resulting in accelerated functional axon recovery. STING KO mice have lower macrophage number in sciatic nerve and decreased microglia activation in spinal cord 1 week post injury. STING activation regulated processing of colony stimulating factor 1 receptor (CSF1R) and microglia survival in vitro. Taking together, these data highlight a previously unrecognized role of STING in the regulation of nerve regeneration.

5.
Cell Rep ; 29(6): 1539-1554.e7, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31693894

ABSTRACT

Age-related loss of skeletal muscle innervation by motor neurons leads to impaired neuromuscular function and is a well-established clinical phenomenon. However, the underlying pathogenesis remains unclear. Studying mice, we find that the number of motor units (MUs) can be maintained by counteracting neurotoxic microglia in the aged spinal cord. We observe that marked innervation changes, detected by motor unit number estimation (MUNE), occur prior to loss of muscle function in aged mice. This coincides with gene expression changes indicative of neuronal remodeling and microglial activation in aged spinal cord. Voluntary exercise prevents loss of MUs and reverses microglia activation. Depleting microglia by CSF1R inhibition also prevents the age-related decline in MUNE and neuromuscular junction disruption, implying a causal link. Our results suggest that age-related changes in spinal cord microglia contribute to neuromuscular decline in aged mice and demonstrate that removal of aged neurotoxic microglia can prevent or reverse MU loss.


Subject(s)
Aging/metabolism , Microglia/metabolism , Motor Neurons/metabolism , Physical Conditioning, Animal/physiology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Aging/pathology , Animals , Cell Line , Databases, Genetic , Humans , Induced Pluripotent Stem Cells , Macrophages , Male , Mice , Mice, Inbred C57BL , Microglia/enzymology , Microglia/physiology , Motor Neurons/cytology , Motor Neurons/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Neuromuscular Junction/metabolism , Neuronal Plasticity/genetics , RNA-Seq , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Spinal Cord/enzymology , Spinal Cord/metabolism , Spinal Cord/physiopathology
6.
Sci Rep ; 9(1): 13508, 2019 09 18.
Article in English | MEDLINE | ID: mdl-31534149

ABSTRACT

Assessment of myelin integrity in peripheral nerve injuries and pathologies has largely been limited to post-mortem analysis owing to the difficulty in obtaining biopsies without affecting nerve function. This is further encumbered  by the small size of the tissue and its location. Therefore, the development of robust, non-invasive methods is highly attractive. In this study, we used magnetic resonance imaging (MRI) techniques, including magnetization transfer ratio (MTR), to longitudinally and non-invasively characterize both the sciatic nerve crush and lysolecithin (LCP) demyelination models of peripheral nerve injury in rodents. Electrophysiological, gene expression and histological assessments complemented the extensive MRI analyses in young and aged animals. In the nerve crush model, MTR analysis indicated a slower recovery in regions distal to the site of injury in aged animals, as well as incomplete recovery at six weeks post-crush when analyzing across the entire nerve surface. Similar regional impairments were also found in the LCP demyelination model. This research underlines the power of MTR for the study of peripheral nerve injury in small tissues such as the sciatic nerve of rodents and contributes new knowledge to the effect of aging on recovery after injury. A particular advantage of the approach is the translational potential to human neuropathies.


Subject(s)
Age Factors , Nerve Regeneration/physiology , Peripheral Nerve Injuries/diagnostic imaging , Peripheral Nerve Injuries/physiopathology , Animals , Axons/pathology , Biomarkers/metabolism , Disease Models, Animal , Magnetic Resonance Imaging , Male , Mice , Mice, Inbred C57BL , Myelin Sheath/metabolism , Nerve Regeneration/drug effects , Rats , Recovery of Function/drug effects , Sciatic Nerve/injuries , Sciatic Neuropathy/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...