Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Commun (Camb) ; 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39327864

ABSTRACT

Lanthanide ions display unique luminescent properties that make them particularly attractive for the development of bioprobes, including long-lived excited states that allow the implementation of time-gated experiments and the elimination of background fluorescence associated with biological media, as well as narrow emission bands in comparison with typical organic fluorophores, which allow ratiometric and multiplex assays. These luminescent complexes can be combined with peptide ligands to endow them with additional targeting, responsiveness, and selectivity, thus multiplying the opportunities for creative probe design. In this feature article we will present some of the main strategies that researchers have used to develop lanthanide metallopeptide probes for the detection of proteins and nucleic acids, as well as for monitoring enzymatic activity and cellular imaging.

2.
MAbs ; 15(1): 2218951, 2023.
Article in English | MEDLINE | ID: mdl-37300397

ABSTRACT

Long-term delivery is a successful strategy used to reduce the adverse effects of monoclonal antibody (mAb)-based treatments. Macroporous hydrogels and affinity-based strategies have shown promising results in sustained and localized delivery of the mAbs. Among the potential tools for affinity-based delivery systems, the de novo designed Ecoil and Kcoil peptides are engineered to form a high-affinity, heterodimeric coiled-coil complex under physiological conditions. In this study, we created a set of trastuzumab molecules tagged with various Ecoil peptides and evaluated their manufacturability and characteristics. Our data show that addition of an Ecoil tag at the C-termini of the antibody chains (light chains, heavy chains, or both) does not hinder the production of chimeric trastuzumab in CHO cells or affect antibody binding to its antigen. We also evaluated the influence of the number, length, and position of the Ecoil tags on the capture and release of Ecoil-tagged trastuzumab from macroporous dextran hydrogels functionalized with Kcoil peptide (the Ecoil peptide-binding partner). Notably, our data show that antibodies are released from the macroporous hydrogels in a biphasic manner; the first phase corresponding to the rapid release of residual, unbound trastuzumab from the macropores, followed by the affinity-controlled, slow-rate release of antibodies from the Kcoil-functionalized macropore surface.


Subject(s)
Antibodies, Monoclonal , Dextrans , Animals , Cricetinae , Hydrogels/chemistry , Cricetulus , Peptides/chemistry , Trastuzumab/chemistry
3.
J Colloid Interface Sci ; 524: 42-51, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-29631218

ABSTRACT

Tetronics are X-shaped block-copolymers of polyethylene oxide and polypropylene oxide, which self-assemble into micelles and can undergo a sol-gel transition; these transitions are dependent on temperature, concentration but also pH, due to the central diamine group of the tetrablock. We report the nanoscale morphologies underlying these different phases and the rheology of the systems for a very large, highly hydrophilic block copolymer, Tetronic 908, through the combined use of oscillatory rheology, steadyblock-state and time-resolved fluorescence, small-angle neutron scattering (SANS), dynamic light scattering (DLS) and Fourier transform infrared attenuated total reflectance (FTIR-ATR). At low concentrations, SANS reveal core-shell micelles of ca. 10 nm radius, presenting a dehydrated core and a highly hydrated shell, with relatively small aggregation numbers (Nagg ≈ 13). The micelles are notably affected by the pH, due to the protonation of the central amine spacer at low pH (pH ≈ 2), which shifts micellization to higher temperature, with smaller micelles than at natural pH. In the intermediate concentration regime (10-15%), micelles become smaller (Nagg ≈ 5), and present a higher hydration of the core. In the high concentration regime, Tetronic 908 undergoes a sol-gel transition above a threshold temperature, which is fully inhibited at acidic pH. SANS data from the gel phase reveal a BCC order of tightly packed spheres. Temperature sweeps in oscillatory rheology show a shift of the onset of gelation towards lower temperatures as concentration increases, an increase in the elastic modulus G' and an expansion of gel region over a larger range of temperatures. SANS and rheology reveal that at pH below the natural pH (ca. 8), gelation is shifted to higher temperatures, but the morphology of the gels is similar, while under highly acidic conditions the gelation is fully suppresed.

SELECTION OF CITATIONS
SEARCH DETAIL