Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Microorganisms ; 10(12)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36557660

ABSTRACT

Since influenza and coronaviruses are currently deadly and emerging threats worldwide, better treatment, remediation and prevention options are needed. In that regard, a basic understanding of severe acute respiratory syndrome (SARS)-CoV-2/COVID-19 (Betacoronaviridae) and other viral pathogen mechanisms of transmission are expected. Unfortunately, unprecedented, and growing distrust of vaccines and even masks or personal protective equipment (PPE) in the United States and elsewhere presents itself as an added challenge. We postulate that development of improved and highly effective prophylactic measures, together with new life-saving therapies that do inhibit or otherwise treat infection of SARS-CoV-2, influenza and other viral pathogens, could be an adjunct measure to globally protect vulnerable individuals from pandemic threats. In this review, we share what we learned from the past COVID experience to offer a multifactorial and improved approach to current and future pandemic infections or threats using low-cost means.

2.
Metabolomics ; 18(1): 8, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34989922

ABSTRACT

INTRODUCTION: A rapidly growing body of data documents associations between disease of the brain and small molecules generated by gut-microbiota (GMB). While such metabolites can affect brain function through a variety of mechanisms, the most direct action would be on the central nervous system (CNS) itself. OBJECTIVE: Identify indolic and phenolic GMB-dependent small molecules that reach bioactive concentrations in primate CNS. METHODS: We conducted a PubMed search for metabolomic studies of the primate CNS [brain tissue or cerebrospinal fluid (CSF)] and then selected for phenolic or indolic metabolites that (i) had been quantified, (ii) were GMB-dependent. For each chemical we then conducted a search for studies of bioactivity conducted in vitro in human cells of any kind or in CNS cells from the mouse or rat. RESULTS: 36 metabolites of interests were identified in primate CNS through targeted metabolomics. Quantification was available for 31/36 and in vitro bioactivity for 23/36. The reported CNS range for 8 metabolites 2-(3-hydroxyphenyl)acetic acid, 2-(4-hydroxyphenyl)acetic acid, 3-(3-hydroxyphenyl)propanoic acid, (E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid [caffeic acid], 3-hydroxybenzoic acid, 4-hydroxybenzoic acid, 2-acetamido-3-(1H-indol-3-yl)propanoic acid [N-acetyltryptophan], 1H-indol-3-yl hydrogen sulfate [indoxyl-3-sulfate] overlapped with a bioactive concentration. However, the number and quality of relevant studies of CNS neurochemistry as well as of bioactivity were highly limited. Structural isomers, multiple metabolites and potential confounders were inadequately considered. CONCLUSION: The potential direct bioactivity of GMB-derived indolic and phenolic molecules on primate CNS remains largely unknown. The field requires additional strategies to identify and prioritize screening of the most promising small molecules that enter the CNS.


Subject(s)
Gastrointestinal Microbiome , Metabolomics , Animals , Central Nervous System/metabolism , Mice , Phenols/metabolism , Primates/metabolism , Rats
3.
Pathog Immun ; 5(1): 382-418, 2020.
Article in English | MEDLINE | ID: mdl-33474520

ABSTRACT

BACKGROUND: The gut microbiome (GMB) generates numerous small chemicals that can be absorbed by the host and variously biotransformed, incorporated, or excreted. The resulting metabolome can provide information about the state of the GMB, of the host, and of their relationship. Exploiting this information in the service of biomarker development is contingent on knowing the GMB-sensitivity of the individual chemicals comprising the metabolome. In this regard, human studies have lagged far behind animal studies. Accordingly, we tested the hypothesis that serum levels of chemicals unequivocally demonstrated to be GMB-sensitive in rodent models would also be affected in a clinical patient sample treated with broad spectrum antibiotics. METHODS: We collected serum samples from 20 hospitalized patients before, during, and after treatment with broad-spectrum antibiotics. We also collected samples from 5 control patients admitted to the hospital but not prescribed antibiotics. We submitted the samples for a non-targeted metabolomic analysis and then focused on chemicals known to be affected both by germ-free status and by antibiotic treatment in the mouse and/or rat. RESULTS: Putative identification was obtained for 499 chemicals in human serum. An aggregate analysis did not show any time x treatment interactions. However, our literature search identified 10 serum chemicals affected both by germ-free status and antibiotic treatment in the mouse or rat. Six of those chemicals were measured in our patient samples and additionally met criteria for inclusion in a focused analysis. Serum levels of 5 chemicals (p-cresol sulfate, phenol sulfate, hippurate, indole propionate, and indoxyl sulfate) declined significantly in our group of antibiotic-treated patients but did not change in our patient control group. CONCLUSIONS: Broad-spectrum antibiotic treatment in patients lowered serum levels of selected chemicals previously demonstrated to be GMB-sensitive in rodent models. Interestingly, all those chemicals are known to be uremic solutes that can be derived from aromatic amino acids (L-phenylalanine, L-tyrosine, or L-tryptophan) by anaerobic bacteria, particularly Clostridial species. We conclude that judiciously selected serum chemicals can reliably detect antibiotic-induced suppression of the GMB in man and thus facilitate further metabolome-based biomarker development.

4.
Pathog Immun ; 4(2): 271-293, 2019.
Article in English | MEDLINE | ID: mdl-31773068

ABSTRACT

BACKGROUND: The gut microbiome (GMB) generates numerous chemicals that are absorbed systemically and excreted in urine. Antibiotics can disrupt the GMB ecosystem and weaken its resistance to colonization by enteric pathogens such as Clostridium difficile. If the changes in GMB composition and metabolism are sufficiently large, they can be reflected in the urinary metabo-lome. Characterizing these changes could provide a potentially valuable biomarker of the status of the GMB. While preliminary studies suggest such a possibility, the high level of data variance presents a challenge to translational applications. Since many GMB-generated chemicals are derived from the biotransformation of plant-derived dietary polyphenols, administering an oral precursor challenge should amplify GMB-dependent changes in urinary metabolites. METHODS: A course of antibiotics (clindamycin, piperacillin/tazobactam, or aztreonam) was administered SC daily (days 1 and 2) to mice receiving polyphenol-rich green tea in drinking water. Urine was collected at baseline as well as days 3, 7, and 11. Levels of pyrogallol and pyrocatechol, two phenolic molecules unequivocally GMB-dependent in humans but that had not been similarly examined in mice, were quantified. RESULTS: In confirmation of our hypothesis, differential changes in murine urinary pyrogallol levels identified the treatments (clindamycin, piperacillin/tazobactam) previously associated with a weakening of colonization resistance to Clostridium difficile. The changes in pyrocatechol levels did not withstand corrections for multiple comparisons. CONCLUSIONS: In the mouse, urinary pyrogallol and, in all likelihood, pyrocatechol levels, are GMB-dependent and, in combination with precursor challenge, deserve further consideration as potential metabolomic biomarkers for the health and dysbiotic vulnerability of the GMB.

5.
Psychopharmacology (Berl) ; 236(5): 1471-1489, 2019 May.
Article in English | MEDLINE | ID: mdl-31197432

ABSTRACT

Schizophrenia and autism spectrum disorder have long been associated with elevated levels of various small phenolic molecules (SPMs). In turn, the gut microbiota (GMB) has been implicated in the kinetics of many of these analytes. Unfortunately, research into the possible relevance of GMB-mediated SPMs to neuropsychiatry continues to be limited by heterogeneous study design, numerous sources of variance and technical challenges. Some SPMs have multiple structural isomers and most have conjugates. Without specialized approaches, SPMs can be incorrectly assigned or inaccurately quantified. In addition, SPM levels can be affected by dietary polyphenol or protein consumption and by various medications and diseases. Nonetheless, heterotypical excretion of various SPMs in association with schizophrenia or autism continues to be reported in independent samples. Recent studies in human cerebrospinal fluid demonstrate the presence of many SPMs A large number of these are bioactive in experimental models. Whether such mechanisms are relevant to the human brain in health or disease is not known. Systematic metabolomic and microbiome studies of well-characterized populations, an appreciation of multiple confounds, and implementation of standardized approaches across platforms and sites are needed to delineate the potential utility of the phenolic interactome in neuropsychiatry.


Subject(s)
Autism Spectrum Disorder/metabolism , Brain/metabolism , Gastrointestinal Microbiome/physiology , Phenols/metabolism , Schizophrenia/metabolism , Autism Spectrum Disorder/psychology , Brain/drug effects , Gastrointestinal Microbiome/drug effects , Humans , Polyphenols/administration & dosage , Polyphenols/metabolism , Schizophrenic Psychology
6.
Bioanalysis ; 10(19): 1591-1608, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30295550

ABSTRACT

AIM: Co-metabolism between a human host and the gastrointestinal microbiota generates many small phenolic molecules such as 3-hydroxy-3-(3-hydroxyphenyl)propanoic acid (3,3-HPHPA), which are reported to be elevated in schizophrenia and autism. Characterization of these chemicals, however, has been limited by analytic challenges. METHODOLOGY/RESULTS: We applied HPLC to separate and quantify over 50 analytes, including multiple structural isomers of 3,3-HPHPA in human cerebrospinal fluid, serum and urine. Confirmation of identity was provided by NMR, by MS and other detection methods. The highly selective methods support rapid quantification of multiple metabolites and exhibit superior chromatographic behavior. CONCLUSION: An improved ultra-HPLC-MS/MS and structural approaches can accurately quantify 3,3-HPHPA and related analytes in human biological matrices.


Subject(s)
Hydroxybenzoates/metabolism , Metabolomics/methods , Chromatography, High Pressure Liquid , Humans , Hydroxybenzoates/blood , Hydroxybenzoates/cerebrospinal fluid , Hydroxybenzoates/urine , Isomerism , Tandem Mass Spectrometry
7.
Microorganisms ; 6(4)2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30340384

ABSTRACT

'Leaky gut' syndrome, long-associated with celiac disease, has attracted much attention in recent years and for decades, was widely known in complementary/alternative medicine circles. It is often described as an increase in the permeability of the intestinal mucosa, which could allow bacteria, toxic digestive metabolites, bacterial toxins, and small molecules to 'leak' into the bloodstream. Nervous system involvement with celiac disease is know to occur even at subclinical levels. Gluten and gluten sensitivity are considered to trigger this syndrome in individuals genetically predisposed to celiac disease. However, the incidence of celiac disease in the general population is quite low. Nevertheless, increased public interest in gluten sensitivity has contributed to expanded food labels stating 'gluten-free' and the proliferation of gluten-free products, which further drives gluten-free lifestyle changes by individuals without frank celiac disease. Moreover, systemic inflammation is associated with celiac disease, depression, and psychiatric comorbidities. This mini-review focuses on the possible neurophysiological basis of leaky gut; leaky brain disease; and the microbiota's contribution to inflammation, gastrointestinal, and blood-brain barrier integrity, in order to build a case for possible mechanisms that could foster further 'leaky' syndromes. We ask whether a gluten-free diet is important for anyone or only those with celiac disease.

8.
Article in English | MEDLINE | ID: mdl-28584146

ABSTRACT

Antibiotics excreted into the intestinal tract may disrupt the microbiota that provide colonization resistance against enteric pathogens and alter normal metabolic functions of the microbiota. Many of the bacterial metabolites produced in the intestinal tract are absorbed systemically and excreted in urine. Here, we used a mouse model to test the hypothesis that alterations in levels of targeted bacterial metabolites in urine specimens could provide useful biomarkers indicating disrupted or intact colonization resistance. To assess in vivo colonization resistance, mice were challenged with Clostridium difficile spores orally 3, 6, and 11 days after the completion of 2 days of treatment with piperacillin-tazobactam, aztreonam, or saline. For concurrent groups of antibiotic-treated mice, urine samples were analyzed by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify the concentrations of 11 compounds targeted as potential biomarkers of colonization resistance. Aztreonam did not affect colonization resistance, whereas piperacillin-tazobactam disrupted colonization resistance 3 days after piperacillin-tazobactam treatment, with complete recovery by 11 days after treatment. Three of the 11 compounds exhibited a statistically significant and >10-fold increase (the tryptophan metabolite N-acetyltryptophan) or decrease (the plant polyphenyl derivatives cinnamoylglycine and enterodiol) in concentrations in urine 3 days after piperacillin-tazobactam treatment, followed by recovery to baseline that coincided with the restoration of in vivo colonization resistance. These urinary metabolites could provide useful and easily accessible biomarkers indicating intact or disrupted colonization resistance during and after antibiotic treatment.


Subject(s)
Gastrointestinal Microbiome/drug effects , Glycine/analogs & derivatives , Intestines/microbiology , Lignans/urine , Tryptophan/analogs & derivatives , Animals , Anti-Bacterial Agents/pharmacology , Aztreonam/metabolism , Aztreonam/pharmacology , Biomarkers/urine , Chromatography, Liquid , Clostridioides difficile/drug effects , Drug Resistance, Bacterial/physiology , Glycine/urine , Intestines/drug effects , Metabolome/drug effects , Metabolomics , Mice , Penicillanic Acid/analogs & derivatives , Penicillanic Acid/metabolism , Penicillanic Acid/pharmacology , Piperacillin/metabolism , Piperacillin/pharmacology , Piperacillin, Tazobactam Drug Combination , Tandem Mass Spectrometry , Tryptophan/urine
10.
Front Biosci (Elite Ed) ; 7(2): 229-41, 2015 01 01.
Article in English | MEDLINE | ID: mdl-25553376

ABSTRACT

Although there has been much research into autism or autistic spectrum disorder (ASD), there is room for considerable conjecture regarding the etiology of these developmental brain disorders. ASD is marked by a complex interaction between environmental factors and genetic predisposition, including epistasis. This manuscript argues that changes in oxidative metabolism, thiamine homeostasis, heavy metal deposition and cellular immunity have a role in the etiopathogenesis of autism and ASD. Recent findings from our group and others provide evidence for abnormal thiol metabolism, marked by significant alteration in the deposition of several trace heavy metal species. Together with these, we find differences in thiamine homeostasis in ASD patients, which can be corrected by supplementation. We hypothesize that altered thiol metabolism from heavy metal toxicity, one of the key mechanisms for oxidative stress production, may be responsible for the biochemical alterations in transketolase, dysautonomia and abnormal thiamine homeostasis. Although it is unknown why these particular metals accumulate, we suspect that children with ASD and forms of autism may have particular trouble excreting thiol-toxic heavy metal species, many of which exist as divalent cations. We maintain mercury accumulation is evidence of altered clearance. Together with concomitant oxidative stress, these findings may offer an intriguing component or possible mechanism for oxidative stress-mediated neurodegeneration in ASD patients. Regardless of the exact cause, these factors may be more important to the etiology of this symptomatically diverse disease spectrum. Here, we offer insight into new avenues of exploration as well as the development of novel treatment approaches for these growing and devastating diseases.


Subject(s)
Child Development Disorders, Pervasive/etiology , Child Development Disorders, Pervasive/metabolism , Thiamine/metabolism , Transketolase/metabolism , Child Development Disorders, Pervasive/drug therapy , Homeostasis , Humans , Mutation , Oxidative Stress , Thiamine/analogs & derivatives , Thiamine/therapeutic use
11.
Oxid Med Cell Longev ; 2013: 962984, 2013.
Article in English | MEDLINE | ID: mdl-23691268

ABSTRACT

Nitric oxide- (NO-) dependent oxidative stress results in mitochondrial ultrastructural alterations and DNA damage in cases of Alzheimer disease (AD). However, little is known about these pathways in human cancers, especially during the development as well as the progression of primary brain tumors and metastatic colorectal cancer. One of the key features of tumors is the deficiency in tissue energy that accompanies mitochondrial lesions and formation of the hypoxic smaller sized mitochondria with ultrastructural abnormalities. We speculate that mitochondrial involvement may play a significant role in the etiopathogenesis of cancer. Recent studies also demonstrate a potential link between AD and cancer, and anticancer drugs are being explored for the inhibition of AD-like pathology in transgenic mice. Severity of the cancer growth, metastasis, and brain pathology in AD (in animal models that mimic human AD) correlate with the degree of mitochondrial ultrastructural abnormalities. Recent advances in the cell-cycle reentry of the terminally differentiated neuronal cells indicate that NO-dependent mitochondrial abnormal activities and mitotic cell division are not the only important pathogenic factors in pathogenesis of cancer and AD, but open a new window for the development of novel treatment strategies for these devastating diseases.


Subject(s)
Alzheimer Disease/pathology , DNA, Mitochondrial/metabolism , Neoplasms/pathology , Nitric Oxide/metabolism , Oxidative Stress , Sequence Deletion , Animals , Humans , Neoplasms/enzymology , Neoplasms/ultrastructure
12.
Recent Pat Cardiovasc Drug Discov ; 6(3): 222-41, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21906026

ABSTRACT

Oxidative stress in the cardiovascular system, including brain microvessels and/or parenchymal cells results in an accumulation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) compounds thus promoting leukocyte adhesion and increasing endothelial permeability. The resulting chronic injury stimulus results in progressive cellular hypometabolism. We propose that hypometabolism, coupled with oxidative stressors, is responsible for most Alzheimer disease (AD) and cerebrovascular accidents (CVAs) and appears to be a central initiating factor for vascular abnormalities, mitochondrial damage and an imbalance in the activity of vasoactive substances, such as different isoforms of nitric oxide synthase (NOS), endothelin-1 (ET-1), oxidative stress markers, mtDNA and mitochondrial enzymes in the vascular wall and in brain parenchymal cells. At higher concentrations, ROS induces cell injury and death, which occurs during the aging process, where accelerated generation of ROS and a gradual decline in cellular antioxidant defense mechanisms, especially in the mitochondria. Vascular endothelial and neuronal mitochondria are especially vulnerable to oxidative stress due to their role in energy supply and use, which can cause a cascade of debilitating factors such as the production of giant and/or vulnerable young mitochondrion who's DNA has been compromised. Therefore, mitochondrial DNA abnormalities such as overproliferation and or deletion can be used as a key marker for diseases differentiation and effectiveness of the treatment. We speculate that specific antioxidants such as acetyl-L-carnitine and R-alpha lipoic acid seem to be potential treatments for AD. They target the factors that damage mitochondria and reverse its effect, thus eliminating the imbalance seen in energy production and restore the normal cellular function, making these antioxidants very powerful alternate strategies for the treatment of cardiovascular cerebrovascular as well as neurodegenerative diseases including AD. Future potential exploration using mtDNA markers can be considered more accurate hallmarks for diagnosis and monitoring treatment of human diseases. The present article discusses some of the patents regarding the oxidative stress.


Subject(s)
Cerebrovascular Disorders/drug therapy , Drug Design , Oxidative Stress , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Biomarkers/metabolism , Cerebrovascular Disorders/genetics , Cerebrovascular Disorders/physiopathology , DNA, Mitochondrial/genetics , Gene Deletion , Humans , Patents as Topic , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism
13.
Biol Trace Elem Res ; 144(1-3): 475-86, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21755304

ABSTRACT

Autism and autism spectrum disorder (ASD) are developmental brain disorders with complex, obscure, and multifactorial etiology. Our recent clinical survey of patient records from ASD children under the age of 6 years and their age-matched controls revealed evidence of abnormal markers of thiol metabolism, as well as a significant alteration in deposition of several heavy metal species, particularly arsenic, mercury, copper, and iron in hair samples between the groups. Altered thiol metabolism from heavy metal toxicity may be responsible for the biochemical alterations in transketolase, and are mechanisms for oxidative stress production, dysautonomia, and abnormal thiamine homeostasis. It is unknown why the particular metals accumulate, but we suspect that children with ASD may have particular trouble excreting thiol-toxic heavy metal species, many of which exist as divalent cations. Accumulation or altered mercury clearance, as well as concomitant oxidative stress, arising from redox-active metal and arsenic toxicity, offers an intriguing component or possible mechanism for oxidative stress-mediated neurodegeneration in ASD patients. Taken together, these factors may be more important to the etiology of this symptomatically diverse disease spectrum and may offer insights into new treatment approaches and avenues of exploration for this devastating and growing disease.


Subject(s)
Autistic Disorder/metabolism , Metals, Heavy/metabolism , Transketolase/metabolism , Autistic Disorder/enzymology , Child , Erythrocytes/enzymology , Female , Hair/chemistry , Humans , Indicators and Reagents , Male , Mass Spectrometry , Metals, Heavy/urine , Oxidative Stress/physiology , Thiamine Pyrophosphate , Transketolase/blood
14.
Curr Alzheimer Res ; 8(8): 868-75, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21592049

ABSTRACT

It is known that oxidative stress and mitochondrial dysfunction both play an important role in animal models of brain ischemia. The present study was undertaken to test whether oral supplementation of coenzyme Q10 (ubiquinone) or creatine citrate could protect against brain ischemia-induced mitochondrial damage in the rats model. Brain ischemia was induced for 50 minutes with three-vessel occlusion (3-VO). Coenzyme Q10 was administered for 30 days before the ischemic event and coenzyme Q10 or creatine citrate for 30 days post-ischemia. Moreover, the concentrations of coenzyme Q10 and α-, γ- tocopherols as well as the formation of thiobarbituric acid reactive substances (TBARS) were measured in brain mitochondria and in plasma. Transient hypoperfusion revealed significant impairment in brain energy metabolism as detected by mitochondrial oxidative phosphorylation as well as decreased concentrations of brain and plasma endogenous antioxidants and increased formation of TBARS in plasma. When compared with the ischemic group, supplementation of coenzyme Q10 was ineffective as a preventive agent. However, the positive effect of therapeutic coenzyme Q10 supplementation was supported by the oxygen consumption values (p < 0.05) and ATP production (p < 0.05) in brain mitochondria, as well as by increased concentration of coenzyme Q9 (p < 0.05) and concentration of α-tocopherol (p < 0.05) in brain mitochondria and by increased concentration of α-tocopherol (p < 0.05) and γ-tocopherol in plasma. This suggests that coenzyme Q10 therapy involves resistance to oxidative stress and improved brain bioenergetics, when supplemented during reperfusion after ischemic brain injury.


Subject(s)
Creatine/administration & dosage , Energy Metabolism/drug effects , Hypoxia-Ischemia, Brain/diet therapy , Hypoxia-Ischemia, Brain/metabolism , Oxidative Stress/drug effects , Ubiquinone/administration & dosage , Animals , Cerebral Cortex/blood supply , Chronic Disease , Citrates/administration & dosage , Dietary Supplements , Disease Models, Animal , Energy Metabolism/physiology , Hypoxia-Ischemia, Brain/physiopathology , Male , Micronutrients/administration & dosage , Oxidative Stress/physiology , Perfusion , Rats , Rats, Wistar
15.
CNS Neurol Disord Drug Targets ; 10(2): 192-207, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21226664

ABSTRACT

There is growing scientific agreement that antioxidants, particularly the polyphenolic forms, may help lower the incidence of disease, such as certain cancers, cardiovascular and neurodegenerative diseases, DNA damage, or even have anti-aging properties. On the other hand, questions remain as to whether some antioxidants or phytochemicals potentially could do more harm than good, as an increase in glycation-mediated protein damage (carbonyl stress) and some risk has been reported. Nevertheless, the quest for healthy aging has led to the use of antioxidants as a means to disrupt age-associated deterioration in physiological function, dysregulated metabolic processes or prevention of many age-related diseases. Although a diet rich in polyphenolic forms of antioxidants does seem to offer hope in delaying the onset of age-related disorders, it is still too early to define their exact clinical benefit for treating age-related disease. Regardless of where the debate will end, it is clear that any deficiency in antioxidant vitamins or adequate enzymatic antioxidant defenses can manifest in many disease states and shift the redox balance in some diseases. This updated review critically examines general antioxidant compounds in health, disease and aging with hope that a better understanding of the many mechanisms involved with these diverse compounds may lead to better health and novel treatment approaches for age-related diseases.


Subject(s)
Aging/physiology , Antioxidants/therapeutic use , Cardiovascular Diseases/prevention & control , Neoplasms/prevention & control , Neurodegenerative Diseases/prevention & control , Vitamins/therapeutic use , Antioxidants/administration & dosage , Antioxidants/adverse effects , Antioxidants/chemistry , Cardiovascular Diseases/drug therapy , Diet , Flavonoids/adverse effects , Flavonoids/therapeutic use , Health , Humans , Neoplasms/drug therapy , Neurodegenerative Diseases/drug therapy , Oxidation-Reduction , Oxidative Stress , Phenols/adverse effects , Phenols/therapeutic use , Polyphenols
16.
CNS Neurol Disord Drug Targets ; 10(2): 149-62, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21222631

ABSTRACT

Age-related dementias such as Alzheimer disease (AD) have been linked to vascular disorders like hypertension, diabetes and atherosclerosis. These risk factors cause ischemia, inflammation, oxidative damage and consequently reperfusion, which is largely due to reactive oxygen species (ROS) that are believed to induce mitochondrial damage. At higher concentrations, ROS can cause cell injury and death which occurs during the aging process, where oxidative stress is incremented due to an accelerated generation of ROS and a gradual decline in cellular antioxidant defense mechanisms. Neuronal mitochondria are especially vulnerable to oxidative stress due to their role in energy supply and use, causing a cascade of debilitating factors such as the production of giant and/or vulnerable young mitochondrion who's DNA has been compromised. Therefore, mitochondria specific antioxidants such as acetyl-L-carnitine and R-alphalipoic acid seem to be potential treatments for AD. They target the factors that damage mitochondria and reverse its effect, thus eliminating the imbalance seen in energy production and amyloid beta oxidation and making these antioxidants very powerful alternate strategies for the treatment of AD.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Antioxidants/therapeutic use , Mitochondria/metabolism , Aging , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Blood-Brain Barrier , Brain/blood supply , Brain/pathology , Cerebrovascular Disorders/physiopathology , Humans , Mice , Mitochondria/pathology
17.
CNS Neurol Disord Drug Targets ; 10(2): 175-83, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21222633

ABSTRACT

Recent evidence has associated the aberrant, proximal re-expression of various cell cycle control elements with neuronal cell vulnerability in Alzheimer's and Parkinson's diseases, as a common chronic neurodegeneration. This phenomenon associated with oncogenic transduction pathway activation has attracted the interest of scientists all over the world for a few years now. The purpose of this paper is to outline areas of research related to oncogenic factors or medicines in the context of potential applications for future treatment of the above mentioned chronic and, largely, incurable diseases.


Subject(s)
Alzheimer Disease/metabolism , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Oncogene Proteins/metabolism , Oncogenes , Signal Transduction , Alzheimer Disease/drug therapy , Cell Cycle , Humans , Nerve Degeneration/metabolism , Neurons/metabolism , Neurons/pathology , Nuclear Pore Complex Proteins/metabolism , Oxidative Stress , Parkinson Disease/metabolism , Parkinson Disease/pathology
18.
Autism Res Treat ; 2011: 129795, 2011.
Article in English | MEDLINE | ID: mdl-22937241

ABSTRACT

Case histories of a mother and her two children are reported. The mother was a recovered alcoholic. She and her two children, both of whom had symptoms that are typical of autistic spectrum disorder, had dysautonomia. All had intermittently abnormal erythrocyte transketolase studies indicating abnormal thiamine pyrophosphate homeostasis. Both children had unusual concentrations of urinary arsenic. All had symptomatic improvement with diet restriction and supplementary vitamin therapy but quickly relapsed after ingestion of sugar, milk, or wheat. The stress of a heavy metal burden, superimposed on existing genetic or epigenetic risk factors, may be important in the etiology of autism spectrum disorder when in combination. Dysautonomia has been associated with several diseases, including autism, without a common etiology. It is hypothesized that oxidative stress results in loss of cellular energy and causes retardation of hard wiring of the brain in infancy, affecting limbic system control of the autonomic nervous system.

19.
Rejuvenation Res ; 13(6): 631-43, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20818981

ABSTRACT

Polyphenolic antioxidants from dietary sources are frequently a topic of interest due to widespread scientific agreement that they may help lower the incidence of certain cancers, cardiovascular and neurodegenerative diseases, and DNA damage and even may have antiaging properties. On the other hand, questions still remain as to whether some antioxidants could be potentially harmful to health, because an increase in glycation-mediated protein damage (carbonyl stress) has been reported in some cases. Nevertheless, the quest for healthy aging has led to the extensive use of phytochemically derived antioxidants to disrupt age-associated deterioration in physiological function and to prevent many age-related diseases. Although a diet rich in the polyphenolic forms of antioxidants does seem to offer hope in delaying the onset of age-related disorders, it is still too early to define their exact clinical benefit for treating age-related disease. This review critically examines polyphenolic antioxidants, such as flavonoids, curcumene, and resveratrol in health, disease, and aging with the hope that a better understanding of the many mechanisms involved with these diverse compounds may lead to better health and novel treatment approaches for age-related diseases.


Subject(s)
Aging/metabolism , Antioxidants/metabolism , Disease , Flavonoids/metabolism , Health , Phenols/metabolism , Antioxidants/adverse effects , Antioxidants/chemistry , Flavonoids/adverse effects , Flavonoids/chemistry , Humans , Lipid Metabolism , Phenols/adverse effects , Phenols/chemistry , Polyphenols
20.
J Biol Chem ; 285(40): 30489-95, 2010 Oct 01.
Article in English | MEDLINE | ID: mdl-20670940

ABSTRACT

The presence of the prion protein (PrP) in normal human urine is controversial and currently inconclusive. This issue has taken a special relevance because prion infectivity has been demonstrated in urine of animals carrying experimental or naturally occurring prion diseases, but the actual presence and tissue origin of the infectious prion have not been determined. We used immunoprecipitation, one- and two-dimensional electrophoresis, and mass spectrometry to prove definitely the presence of PrP in human urine and its post-translational modifications. We show that urinary PrP (uPrP) is truncated mainly at residue 112 but also at other residues up to 122. This truncation makes uPrP undetectable with some commonly used antibodies to PrP. uPrP is glycosylated and carries an anchor which, at variance with that of cellular PrP, lacks the inositol-associated phospholipid moiety, indicating that uPrP is probably shed from the cell surface. The detailed characterization of uPrP reported here definitely proves the presence of PrP in human urine and will help determine the origin of prion infectivity in urine.


Subject(s)
Prion Diseases/urine , Prions/urine , Protein Processing, Post-Translational , Humans , Prions/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...