Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 7: 206, 2016.
Article in English | MEDLINE | ID: mdl-27917194

ABSTRACT

A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus, a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays, and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays, there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus. Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus.

2.
Chem Res Toxicol ; 21(3): 752-60, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18266327

ABSTRACT

The aflatoxin B 1 aldehyde reductases (AFARs), inducible members of the aldo-keto reductase superfamily, convert aflatoxin B 1 dialdehyde derived from the exo- and endo-8,9-epoxides into a number of reduced alcohol products that might be less capable of forming covalent adducts with proteins. An isotope dilution tandem mass spectrometry method for quantification of the metabolites, C-8 monoalcohol, dialcohol, and C-6a monoalcohol, was developed to ascertain their possible role as urinary biomarkers for application to chemoprevention investigations. This method uses a novel (13)C 17-aflatoxin B 1 dialcohol internal standard, synthesized from (13)C 17-aflatoxin B 1 biologically produced by Aspergillus flavus. Chromatographic standards of the alcohols were generated through sodium borohydride reduction of the aflatoxin B 1 dialdehyde. This method was then explored for sensitivity and specificity in urine samples of aflatoxin B 1-dosed rats that were pretreated with 3 H-1,2-dithiole-3-thione to induce the expression of AKR7A1, a rat isoform of AFAR. One of the two known monoalcohols and the dialcohol metabolite were detected in all urine samples. The concentrations were 203.5 +/- 39.0 ng of monoalcohol C-6a/mg of urinary creatinine and 10.0 +/- 1.0 ng of dialcohol/mg of creatinine (mean +/- standard error). These levels represented about 8.0 and 0.4% of the administered aflatoxin B 1 dose that was found in the urine at 24 h, respectively. Thus, this highly sensitive and specific isotope dilution method is applicable to in vivo quantification of urinary alcohol products produced by AFAR. Heretofore, the metabolic fate of the 8,9-epoxides that are critical for aflatoxin toxicities has been measured by biomarkers of lysine-albumin adducts, hepatic and urinary DNA adducts, and urinary mercapturic acids. This urinary detection of the alcohol products directly contributes to the goal of mass balancing the fate of the bioreactive 8,9-epoxides of AFB 1 in vivo.


Subject(s)
Aflatoxin B1/urine , Aldehyde Reductase/metabolism , Aldehydes/metabolism , Carcinogens/metabolism , Animals , Chromatography, Affinity , Chromatography, High Pressure Liquid , Diet , Escherichia coli/metabolism , Glucuronidase/urine , Male , Radioisotope Dilution Technique , Rats , Rats, Sprague-Dawley , Reference Standards , Solid Phase Extraction , Spectrometry, Mass, Electrospray Ionization , Sulfatases/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...