Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Regul Toxicol Pharmacol ; 137: 105315, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36494001

ABSTRACT

Fatty esters of 2-ethylhexanoic acid (EHA) and 2-ethylhexanol (EH) are commonly used in cosmetics. Human liver and skin S9 and human plasma were used to determine the in vitro rates of clearance (CLint) of a series of compounds, with a range of 2-11 carbons on the acid or alcohol moiety and branching at the C2 position. The impact of carbon chain length on in vitro CLint was most prominent for the liver metabolism of esters of EH, while for in vitro skin metabolism it was greater for esters of EHA. The position of the branching also impacted the liver hydrolysis rates, especially for the C3, C4, and C5 esters with lower CLint in vitro rates for esters of EHA relative to those of EH. When the in vitro intrinsic clearance rates were scaled to in vivo rates of hepatic clearance, all compounds approximated the rate for hepatic blood flow, mitigating this dependence of metabolism on structure. This work shows how structural changes to the molecule can affect in vitro metabolism and, furthermore, allows for an estimation of the in vivo metabolism.


Subject(s)
Esters , Liver , Humans , Hydrolysis , Metabolic Clearance Rate , Liver/metabolism
2.
Toxicol Sci ; 191(2): 343-356, 2023 02 17.
Article in English | MEDLINE | ID: mdl-36583546

ABSTRACT

The purpose of this study was to use chemical similarity evaluations, transcriptional profiling, in vitro toxicokinetic data, and physiologically based pharmacokinetic (PBPK) models to support read-across for a series of branched carboxylic acids using valproic acid (VPA), a known developmental toxicant, as a comparator. The chemicals included 2-propylpentanoic acid (VPA), 2-ethylbutanoic acid, 2-ethylhexanoic acid (EHA), 2-methylnonanoic acid, 2-hexyldecanoic acid, 2-propylnonanoic acid (PNA), dipentyl acetic acid or 2-pentylheptanoic acid, octanoic acid (a straight chain alkyl acid), and 2-ethylhexanol. Transcriptomics was evaluated in 4 cell types (A549, HepG2, MCF7, and iCell cardiomyocytes) 6 h after exposure to 3 concentrations of the compounds, using the L1000 platform. The transcriptional profiling data indicate that 2- or 3-carbon alkyl substituents at the alpha position of the carboxylic acid (EHA and PNA) elicit a transcriptional profile similar to the one elicited by VPA. The transcriptional profile is different for the other chemicals tested, which provides support for limiting read-across from VPA to much shorter and longer acids. Molecular docking models for histone deacetylases, the putative target of VPA, provide a possible mechanistic explanation for the activity cliff elucidated by transcriptomics. In vitro toxicokinetic data were utilized in a PBPK model to estimate internal dosimetry. The PBPK modeling data show that as the branched chain increases, predicted plasma Cmax decreases. This work demonstrates how transcriptomics and other mode of action-based methods can improve read-across.


Subject(s)
Carboxylic Acids , Transcriptome , Carboxylic Acids/toxicity , Molecular Docking Simulation , Valproic Acid/toxicity , Structure-Activity Relationship
3.
Regul Toxicol Pharmacol ; 122: 104918, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33741472

ABSTRACT

Parabens are antimicrobial compounds used as preservatives in cosmetics, foods, and pharmaceuticals. Paraben exposure occurs through a variety of routes including dermal absorption, ingestion, and inhalation. Ester bond hydrolysis has been shown to be the predominant biotransformation for this chemical class. Here we evaluated a series of parabens of increasing alkyl chain length and branching in addition to the aryl side chain of phenyl paraben (PhP). We evaluated the parabens under full Michaelis-Menten (MM) parameters to obtain intrinsic clearance values and found different trends between human liver and skin, which correlate with the predominant esterase enzymes in those matrices, respectively. In liver, where carboxylesterase 1 (CES1) is the predominant esterase enzyme, the shorter chain parabens were more readily metabolized, while in skin, where carboxylesterase 2 (CES2) is the predominant esterase enzyme, the longer chain parabens were more readily metabolized. Alkyl chain branching reduced the hydrolysis rates relative to those for the straight chain compounds, while the addition of a phenyl group, as in PhP, showed an increase in hydrolysis, producing the highest observed hydrolysis rate for skin. These data summarize the structure-metabolism relationship for a series of parabens and contribute to the safety assessment of this class of compounds.


Subject(s)
Parabens/chemistry , Parabens/pharmacology , Preservatives, Pharmaceutical/chemistry , Preservatives, Pharmaceutical/pharmacology , Blood/drug effects , Esterases/metabolism , Female , Humans , Liver/drug effects , Male , Skin/drug effects
5.
Toxicol In Vitro ; 69: 104990, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32882340

ABSTRACT

A standard protocol was used to determine partition (K) and diffusion (D) coefficients in dermatomed human skin and isolated human skin layers for 50 compounds relevant to cosmetics ingredients. K values were measured in dermatomed skin, isolated dermis, whole epidermis, intact stratum corneum (SC), delipidized SC and SC lipids by direct measurements of the radioactivity in the tissue layers/lipid component vs. buffer samples. D determinations were made in dermatomed skin, isolated dermis, whole epidermis and intact SC using a non-linear regression of the cumulative receptor fluid content of radiolabeled compound, fit to the solution of Fick's 2nd Law. Correlation analysis was completed between K, D, and physicochemical properties. The amount of interindividual (donor) and intraindividual (replicate) variability in the K and D data was characterized for each skin layer and chemical. These data can be further used to help inform the factors that influence skin bioavailability and to help improve in silico models of dermal penetration.


Subject(s)
Cosmetics/chemistry , Cosmetics/metabolism , Risk Assessment/methods , Skin Absorption , Skin/metabolism , Adult , Aged , Diffusion , Female , Humans , In Vitro Techniques , Lipids/chemistry , Middle Aged , Permeability , Serum Albumin, Bovine
6.
Food Chem Toxicol ; 131: 110523, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31129256

ABSTRACT

1,2-Unsaturated pyrrolizidine alkaloids (PAs) are sometimes present in foods or herbal supplements/medicines as impurities and pose potential concerns for liver genotoxicity/carcinogenicity. PAs display a strong structure toxicity relationship, however, current regulatory approaches to risk assessment take the precautionary approach of assuming all PAs display the same potency as the most toxic congeners lasiocarpine (LAS) and riddelliine (RID). Here we explore the relative potencies of a series of structurally diverse PAs by measuring DNA adduct formation in vitro in a rat sandwich culture hepatocyte (SCH) cell system. The adducts generated are consistent with those identified in vivo as biomarkers of PA exposure and potential liver-tumor formation. DNA reactive PAs require metabolic activation to form intermediates that bind DNA, therefore, adduct formation is a direct reflection of reactive metabolite formation. Since the area under the concentration versus time curve (AUC) for the depletion of parent PA from the extracellular media is a measure of PA exposure, the ratio of adducts/AUC provides a measure of hepatocyte exposure to DNA-binding metabolites corresponding to an intrinsic potency for DNA adduct formation. Intrinsic potencies relative to potencies for LAS compare well with existing relative potency data further affirming that PA toxicity varies considerably with chemical structure.


Subject(s)
DNA Adducts/metabolism , Pyrrolizidine Alkaloids/metabolism , Pyrrolizidine Alkaloids/toxicity , Animals , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Hepatocytes/metabolism , Kinetics , Male , Molecular Structure , Pyrrolizidine Alkaloids/chemistry , Rats, Sprague-Dawley
7.
Toxicol In Vitro ; 32: 1-7, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26578466

ABSTRACT

Oral absorption is a key element for safety assessments of cosmetic ingredients, including hair dye molecules. Reliable in vitro methods are needed since the European Union has banned the use of animals for the testing of cosmetic ingredients. Caco-2 cells were used to measure the intestinal permeability characteristics (Papp) of 14 aromatic amine hair dye molecules with varying chemical structures, and the data were compared with historical in vivo oral absorption rat data. The majority of the hair dyes exhibited Papp values that indicated good in vivo absorption. The moderate to high oral absorption findings, i.e. ≥60%, were confirmed in in vivo rat studies. Moreover, the compound with a very low Papp value (APB: 3-((9,10-dihydro-9,10-dioxo-4-(methylamino)-1-anthracenyl)amino)-N,N-dimethyl-N-propyl-1-propanaminium) was poorly absorbed in vivo as well (5% of the dose). This data set suggests that the Caco-2 cell model is a reliable in vitro tool for the determination of the intestinal absorption of aromatic amines with diverse chemical structures. When used in combination with other in vitro assays for metabolism and skin penetration, the Caco-2 model can contribute to the prediction and mechanistic interpretation of the absorption, metabolism and elimination properties of cosmetic ingredients without the use of animals.


Subject(s)
Amines/pharmacokinetics , Animal Testing Alternatives , Hair Dyes/pharmacokinetics , Intestinal Absorption , Administration, Oral , Animals , Biological Assay , Caco-2 Cells , Humans , Rats, Wistar , Reproducibility of Results
8.
Toxicol Appl Pharmacol ; 287(2): 139-148, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26028483

ABSTRACT

Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passage through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis-Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte Km and Vmax values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and Cmax was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers.


Subject(s)
Aminophenols/pharmacokinetics , Hair Dyes/pharmacokinetics , Hepatocytes/metabolism , Keratinocytes/metabolism , Skin Absorption/physiology , Animals , Chromatography, High Pressure Liquid , Epidermis/metabolism , Humans , Mass Spectrometry , Metabolic Clearance Rate , Rats
9.
J Med Chem ; 51(19): 6055-66, 2008 Oct 09.
Article in English | MEDLINE | ID: mdl-18771254

ABSTRACT

A study that was designed to identify plausible replacements for highly basic guanidine moiety contained in potent MC4R agonists, as exemplified by 1, led to the discovery of initial nonguanidine lead 5. Propyl analog 23 was subsequently found to be equipotent to 5, whereas analogs bearing smaller and branched alkyl groups at the 3 position of the oxopiperazine template demonstrated reduced binding affinity and agonist potency for MC4R. Acylation of the NH2 group of the 4F-D-Phe residue of 3-propyl analog 23 significantly increased the binding affinity and the functional activity for MC4R. Analogs with neutral and weakly basic capping groups of the D-Phe residue exhibited excellent MC4R selectivity against MC1R whereas those with an amino acid had moderate MC4R/MC1R selectivity. We have also demonstrated that compound 35 showed promising oral bioavailability and a moderate oral half life and induced significant weight loss in a 28-day rat obesity model.


Subject(s)
Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Obesity/drug therapy , Piperazines/pharmacology , Piperazines/therapeutic use , Receptor, Melanocortin, Type 4/agonists , Administration, Oral , Animals , Anti-Obesity Agents/chemistry , Biological Availability , Diet , Disease Models, Animal , Dogs , Drug Design , Drug Evaluation, Preclinical , Eating/drug effects , Male , Molecular Conformation , Piperazines/chemistry , Rats , Stereoisomerism
10.
Bioorg Med Chem ; 15(5): 2092-105, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17236777

ABSTRACT

The design, synthesis, and biological studies of a novel class of MCH-R1 antagonists based on an aminotetrahydronaphthalene ketopiperazine scaffold is described. Compounds within this class promoted significant body weight reduction in mouse diet induced obesity studies. The potential for hERG blockage activity and QT interval studies in anesthetized dogs are discussed.


Subject(s)
Piperazines/pharmacology , Receptors, Somatostatin/antagonists & inhibitors , Animals , Dogs , Drug Evaluation, Preclinical , Magnetic Resonance Spectroscopy , Male , Mass Spectrometry , Models, Molecular , Piperazines/chemistry , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 17(3): 819-22, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17107796

ABSTRACT

A direct correlation between hERG binding and QTc prolongation was established for a series of aminomethyl tetrahydronaphthalene ketopiperazine MCH-R1 antagonists. Compounds within this class with greater selectivity over hERG were developed. Compound 4h proved to have the best profile, with MCH-R1 Ki = 16 nm and hERG IC50 = 25 microM.


Subject(s)
Ether-A-Go-Go Potassium Channels/drug effects , Naphthalenes/pharmacology , Piperazines/pharmacology , Potassium Channel Blockers/pharmacology , Receptors, Somatostatin/antagonists & inhibitors , Animals , Dogs , ERG1 Potassium Channel , Heart Rate/drug effects , Humans , Indicators and Reagents , Mice , Naphthalenes/chemical synthesis , Piperazines/chemical synthesis , Weight Loss/drug effects
13.
J Med Chem ; 49(15): 4745-61, 2006 Jul 27.
Article in English | MEDLINE | ID: mdl-16854081

ABSTRACT

The design, synthesis, and structure-activity relationships (SAR) of a series of novel proline and pyrrolidine based melanocortin receptor (MCR) agonists are described. To validate a conformationally constrained Arg-Nal dipeptide analogue strategy, we first synthesized and evaluated a test set of cis-(2R,4R)-proline analogues (21a-g). All of these compounds showed significant binding and agonist potency at the hMC1R, hMC3R, and hMC4R. Potent cis-(2S,4R)-pyrrolidine based MCR agonists (35a-g) were subsequently developed by means of this design approach. A SAR study directed toward probing the effect of the two chiral centers in the pyrrolidine ring on biological activity revealed the importance of the (S) absolute configuration at the 2-position for binding affinity, agonist potency, and receptor selectivity. Among the four sets of the pyrrolidine diastereomers investigated, analogues with the (2S,4R) configuration were the most potent agonists across the three receptors, followed by those possessing the (2S,4S) configuration.


Subject(s)
Dipeptides/chemistry , Proline/analogs & derivatives , Proline/chemical synthesis , Pyrrolidines/chemical synthesis , Receptors, Melanocortin/agonists , Binding, Competitive , Cell Line , Humans , Ligands , Molecular Conformation , Molecular Mimicry , Proline/pharmacology , Pyrrolidines/pharmacology , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...