Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurol ; 267(9): 2594-2598, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32385683

ABSTRACT

BACKGROUND: The present study evaluates serum neurofilament light chain (NfL) as a biomarker of disease features in Friedreich's ataxia (FRDA). METHODS: NfL levels from serum of 117 subjects (85 FRDA patients, 13 carriers, and 19 controls) were assayed and correlated with disease features such as smaller GAA repeat length (GAA1), age, sex, and level of neurological dysfunction. RESULTS: Mean serum NfL levels were higher in FRDA patients than in carriers or unaffected controls in two independent cohorts of subjects. In longitudinal samples from FRDA patients drawn monthly or 1 year apart, values changed minimally. No difference was noted between carriers and controls. NfL levels correlated positively with age in controls and carriers of similar age, (Rs = 0.72, p < 0.0005), whereas NfL levels inversely correlated with age in FRDA patients (Rs = - 0.63, p < 0.001). NfL levels were not associated with sex or GAA1 length in patients, and linear regression revealed a significant relationship between NfL levels in the cohort with age (coefficient = - 0.36, p < 0.001), but not sex (p = 0.64) or GAA1 (p = 0.13). CONCLUSION: Because NfL is elevated in patients, but decreases with age and disease progression, our results suggest that age is the critical determinant of NfL in FRDA (rather than clinical or genetic severity).


Subject(s)
Friedreich Ataxia , Biomarkers , Disease Progression , Friedreich Ataxia/genetics , Heterozygote , Humans , Intermediate Filaments , Neurofilament Proteins
2.
Cell Mol Life Sci ; 76(12): 2425-2447, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30788515

ABSTRACT

RDH1 is one of the several enzymes that catalyze the first of the two reactions to convert retinol into all-trans-retinoic acid (atRA). Here, we show that Rdh1-null mice fed a low-fat diet gain more weight as adiposity (17% males, 13% females) than wild-type mice by 20 weeks old, despite neither consuming more calories nor decreasing activity. Glucose intolerance and insulin resistance develop following increased adiposity. Despite the increase in white fat pads, epididymal white adipose does not express Rdh1, nor does muscle. Brown adipose tissue (BAT) and liver express Rdh1 at relatively high levels compared to other tissues. Rdh1 ablation lowered body temperatures during ambient conditions. Given the decreased body temperature, we focused on BAT. A lack of differences in BAT adipogenic gene expression between Rdh1-null mice and wild-type mice, including Pparg, Prdm16, Zfp516 and Zfp521, indicated that the phenotype was not driven by brown adipose hyperplasia. Rather, Rdh1 ablation eliminated the increase in BAT atRA that occurs after re-feeding. This disruption of atRA homeostasis increased fatty acid uptake, but attenuated lipolysis in primary brown adipocytes, resulting in increased lipid content and larger lipid droplets. Rdh1 ablation also decreased mitochondrial proteins, including CYCS and UCP1, the mitochondria oxygen consumption rate, and disrupted the mitochondria membrane potential, further reflecting impaired BAT function, resulting in both BAT and white adipose hypertrophy. RNAseq revealed dysregulation of 424 BAT genes in null mice, which segregated predominantly into differences after fasting vs after re-feeding. Exceptions were Rbp4 and Gbp2b, which increased during both dietary conditions. Rbp4 encodes the serum retinol-binding protein-an insulin desensitizer. Gbp2b encodes a GTPase. Because Gbp2b increased several hundred-fold, we overexpressed it in brown adipocytes. This caused a shift to larger lipid droplets, suggesting that GBP2b affects signaling downstream of the ß-adrenergic receptor during basal thermogenesis. Thus, Rdh1-generated atRA in BAT regulates multiple genes that promote BAT adaptation to whole-body energy status, such as fasting and re-feeding. These gene expression changes promote optimum mitochondria function and thermogenesis, limiting adiposity. Attenuation of adiposity and insulin resistance suggests that RDH1 mitigates metabolic syndrome.


Subject(s)
Adipose Tissue, Brown/physiology , Adiposity , Fasting , Hydroxysteroid Dehydrogenases/metabolism , Tretinoin/metabolism , Animals , Diet, Fat-Restricted , Eating , Energy Metabolism , Female , Gene Deletion , Glucose Intolerance/genetics , Glucose Intolerance/metabolism , Hydroxysteroid Dehydrogenases/genetics , Insulin Resistance , Lipid Metabolism , Male , Mice, Inbred C57BL , Thermogenesis , Vitamin A/metabolism
3.
Anal Biochem ; 484: 162-8, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26045160

ABSTRACT

We report an ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method to quantify all-trans-retinal in biological samples of limited size (15-35mg), which is especially advantageous for use with adipose. To facilitate recovery, retinal and the internal standard 3,4-didehydroretinal were derivatized in situ into their O-ethyloximes. UHPLC resolution combined with high sensitivity and specificity of MS/MS allowed quantification of retinal-O-ethyloximes with a 5-fmol lower limit of detection and a linear range from 5fmol to 1pmol. This assay revealed that extraocular concentrations of retinal range from approximately 2 to 40pmol/g in multiple tissues-the same range as all-trans-retinoic acid. All-trans-retinoic acid has high affinity (kd⩽0.4nM) for its nuclear receptors (RARα, -ß, and -γ), whereas retinal has low (if any) affinity for these receptors, making it unlikely that these retinal concentrations would activate RAR. We also show that the copious amount of vitamin A used in chow diets increases retinal in adipose depots 2- to 5-fold relative to levels in adipose of mice fed a vitamin A-sufficient diet, as recommended for laboratory rodents. This assay also is proficient for quantifying conversion of retinol into retinal in vitro and, therefore, provides an efficient method to study metabolism of retinol in vivo and in vitro.


Subject(s)
Chromatography, High Pressure Liquid/methods , Retinaldehyde/analysis , Tandem Mass Spectrometry/methods , Analytic Sample Preparation Methods , Animals , Male , Mice , Mice, Inbred C57BL , Oximes/chemistry , Retinaldehyde/blood , Retinaldehyde/chemistry
4.
J Biol Chem ; 290(11): 7259-68, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25627686

ABSTRACT

All-trans-retinoic acid (atRA), an autacoid derived from retinol (vitamin A), regulates energy balance and reduces adiposity. We show that energy status regulates atRA biosynthesis at the rate-limiting step, catalyzed by retinol dehydrogenases (RDH). Six h after re-feeding, Rdh1 expression decreased 80-90% in liver and brown adipose tissue and Rdh10 expression was decreased 45-63% in liver, pancreas, and kidney, all relative to mice fasted 16 h. atRA in the liver was decreased 44% 3 h after reduced Rdh expression. Oral gavage with glucose or injection with insulin decreased Rdh1 and Rdh10 mRNA 50% or greater in mouse liver. Removing serum from the medium of the human hepatoma cell line HepG2 increased Rdh10 and Rdh16 (human Rdh1 ortholog) mRNA expression 2-3-fold by 4 h, by increasing transcription and stabilizing mRNA. Insulin decreased Rdh10 and Rdh16 mRNA in HepG2 cells incubated in serum-free medium by inhibiting transcription and destabilizing mRNA. Insulin action required PI3K and Akt, which suppress FoxO1. Serum removal increased atRA biosynthesis 4-fold from retinol in HepG2 cells, whereas dominant-negative FoxO1 prevented the increase. Thus, energy status via insulin and FoxO1 regulate Rdh expression and atRA biosynthesis. These results reveal mechanisms for regulating atRA biosynthesis and the opposing effects of atRA and insulin on gluconeogenesis, and also suggest an interaction between atRA and insulin signaling related diseases, such as type II diabetes and cancer.


Subject(s)
Alcohol Oxidoreductases/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Insulin/metabolism , Tretinoin/metabolism , Alcohol Oxidoreductases/metabolism , Animals , Biosynthetic Pathways , Eating , Energy Metabolism , Fasting/metabolism , Forkhead Box Protein O1 , Hep G2 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Proto-Oncogene Proteins c-akt/metabolism , RNA, Messenger/analysis , RNA, Messenger/genetics
5.
PLoS One ; 9(6): e99435, 2014.
Article in English | MEDLINE | ID: mdl-24911926

ABSTRACT

The relationship between dietary vitamin A and all-trans-retinoic acid levels in serum and tissues had not been quantified. We determined the impact of dietary vitamin A on retinoid levels in serum, liver, kidney, testis, and epididymal white adipose of five mouse strains: AKR/J; BALB/cByJ; C3H/HeJ; C57BL/6J; 129S1/SvImJ. Retinoids were quantified in mice fed copious vitamin A (lab chow, ≥20 IU/g) followed by one month feeding a vitamin A-sufficient diet (4 IU/g), or after three generations of feeding a vitamin A-sufficient diet. Retinol and retinyl esters were measured by high-performance liquid chromatography with ultraviolet absorbance detection. All-trans-retinoic acid was quantified by liquid chromatography tandem mass spectrometry. The amounts of dietary vitamin A had long-term strain-specific effects on tissue retinyl ester, retinol and all-trans-retinoic acid concentrations. Three generations of feeding a vitamin A-sufficient diet decreased all-trans-retinoic acid in most tissues of most strains, in some cases more than 60%, compared to a diet with copious vitamin A. With both diets, all-trans-retinoic acid concentrations maintained an order of liver ≈ testis > kidney > white adipose tissue ≈ serum. Neither retinol nor all-trans-retinoic acid in serum reflected all-trans-retinoic acid concentrations in tissues. Strain and tissue-specific differences in retinol and all-trans-retinoic acid altered by different amounts of dietary vitamin A could have profound effects on retinoid action. This would be the case especially with the increased all-trans-retinoic acid values associated with the amounts of vitamin A and its precursors (carotenoids) in chow diets.


Subject(s)
Animal Feed , Retinoids/metabolism , Animals , Male , Mice , Organ Specificity , Retinoids/blood , Species Specificity
6.
Proc Natl Acad Sci U S A ; 107(50): 21884-9, 2010 Dec 14.
Article in English | MEDLINE | ID: mdl-21115832

ABSTRACT

The all-trans-retinoic acid (atRA) isomer, 9-cis-retinoic acid (9cRA), activates retinoic acid receptors (RARs) and retinoid X receptors (RXRs) in vitro. RARs control multiple genes, whereas RXRs serve as partners for RARs and other nuclear receptors that regulate metabolism. Physiological function has not been determined for 9cRA, because it has not been detected in serum or multiple tissues with analytically validated assays. Here, we identify 9cRA in mouse pancreas by liquid chromatography/tandem mass spectrometry (LC/MS/MS), and show that 9cRA decreases with feeding and after glucose dosing and varies inversely with serum insulin. 9cRA reduces glucose-stimulated insulin secretion (GSIS) in mouse islets and in the rat ß-cell line 832/13 within 15 min by reducing glucose transporter type 2 (Glut2) and glucokinase (GK) activities. 9cRA also reduces Pdx-1 and HNF4α mRNA expression, ∼8- and 80-fold, respectively: defects in Pdx-1 or HNF4α cause maturity onset diabetes of the young (MODY4 and 1, respectively), as does a defective GK gene (MODY2). Pancreas ß-cells generate 9cRA, and mouse models of reduced ß-cell number, heterozygous Akita mice, and streptozotocin-treated mice have reduced 9cRA. 9cRA is abnormally high in glucose-intolerant mice, which have ß-cell hypertropy, including mice with diet-induced obesity (DIO) and ob/ob and db/db mice. These data establish 9cRA as a pancreas-specific autacoid with multiple mechanisms of action and provide unique insight into GSIS.


Subject(s)
Autacoids/metabolism , Glucose/pharmacology , Insulin/metabolism , Pancreas/drug effects , Pancreas/metabolism , Tretinoin/metabolism , Alitretinoin , Animals , Antineoplastic Agents/metabolism , Cell Line , Insulin Secretion , Male , Mice , Mice, Inbred C57BL , Pancreas/cytology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...