Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Diabetes Mellitus ; 3(3)2013 Aug.
Article in English | MEDLINE | ID: mdl-24175152

ABSTRACT

BACKGROUND: Increased mitogen-activated protein kinase (MAPK) phosphorylation has been detected in peripheral nerve of human subjects and animal models with diabetes as well as high-glucose exposed human Schwann cells, and have been implicated in diabetic peripheral neuropathy. In our recent studies, leukocytetype 12/15-lipoxygenase inhibition or gene deficiency alleviated large and small nerve fiber dysfunction, but not intraepidermal nerve fiber loss in streptozotocin-diabetic mice. METHODS: To address a mechanism we evaluated the potential for pharmacological 12/15-lipoxygenase inhibition to counteract excessive MAPK phosphorylation in mouse and cell culture models of diabetic neuropathy. C57Bl6/J mice were made diabetic with streptozotocin and maintained with or without the 12/15-lipoxygenase inhibitor cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC). Human Schwann cells were cultured in 5.5 mM or 30 mM glucose with or without CDC. RESULTS: 12(S) HETE concentrations (ELISA), as well as 12/15-lipoxygenase expression and p38 MAPK, ERK, and SAPK/JNK phosphorylation (all by Western blot analysis) were increased in the peripheral nerve and spinal cord of diabetic mice as well as in high glucose-exposed human Schwann cells. CDC counteracted diabetes-induced increase in 12(S)HETE concentrations (a measure of 12/15-lipoxygenase activity), but not 12/15-lipoxygenase overexpression, in sciatic nerve and spinal cord. The inhibitor blunted excessive p38 MAPK and ERK, but not SAPK/ JNK, phosphorylation in sciatic nerve and high glucose exposed human Schwann cells, but did not affect MAPK, ERK, and SAPK/JNK phosphorylation in spinal cord. CONCLUSION: 12/15-lipoxygenase inhibition counteracts diabetes related MAPK phosphorylation in mouse and cell culture models of diabetic neuropathy and implies that 12/15-lipoxygenase inhibitors may be an effective treatment for diabetic peripheral neuropathy.

2.
Exp Neurol ; 247: 342-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23142188

ABSTRACT

Growing evidence suggests that prediabetes and metabolic syndrome are associated with increased risk for the development of microvascular complications including retinopathy, nephropathy, and, most commonly, peripheral painful neuropathy and/or autonomic neuropathy. The etiology of these disabling neuropathies is unclear, and several clinical and experimental studies implicated obesity, impaired fasting glycemia/impaired glucose tolerance, elevated triglyceride and non-esterified fatty acids, as well as oxidative-nitrative stress. Endoplasmic reticulum stress resulting from abnormal folding of newly synthesized proteins and leading to the impairment of metabolism, transcriptional regulation, and gene expression, is emerging as a key mechanism of metabolic diseases including obesity and diabetes. We evaluated the role for this phenomenon in prediabetic neuropathy using two animal models i.e., Zucker (fa/fa) rats and high-fat diet fed mice which displayed obesity and impaired glucose tolerance in the absence of overt hyperglycemia. Endoplasmic reticulum stress manifest in upregulation of the glucose-regulated proteins BiP/GRP78 and GRP94 of unfolded protein response was identified in the sciatic nerve of Zucker rats. A chemical chaperone, trimethylamine oxide, blunted endoplasmic reticulum stress and alleviated sensory nerve conduction velocity deficit, thermal and mechanical hypoalgesia, and tactile allodynia. A selective inhibitor of eukaryotic initiation factor-2α dephosphorylation, salubrinal, improved glucose intolerance and alleviated peripheral nerve dysfunction in high-fat diet fed mice. Our findings suggest an important role of endoplasmic reticulum stress in the neurobiology of prediabetic peripheral neuropathy, and identify a new therapeutic target.


Subject(s)
Endoplasmic Reticulum Stress/physiology , Peripheral Nervous System Diseases/etiology , Prediabetic State/complications , Action Potentials , Analysis of Variance , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Electric Stimulation , Endoplasmic Reticulum Chaperone BiP , Fatty Acids/blood , Glucose Tolerance Test , Insulin/blood , Lipids/blood , Male , Mice , Mice, Inbred C57BL , Neural Conduction , Peripheral Nervous System Diseases/blood , Prediabetic State/blood , Prediabetic State/etiology , Rats , Rats, Zucker , Sciatic Nerve/metabolism , Sciatic Nerve/pathology , Spinal Cord/metabolism , Spinal Cord/pathology
3.
Int J Mol Med ; 29(6): 989-98, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22407349

ABSTRACT

The Na⁺-H⁺-exchanger-1 (NHE-1) controls intracellular pH and glycolytic enzyme activities, and its expression and activity are increased by diabetes and high glucose. NHE-1-dependent upregulation of the upper part of glycolysis, under conditions of inhibition (lens) or insufficient activation (retina) of glyceraldehyde 3-phosphate dehydrogenase, underlies diversion of the excessive glycolytic flux towards several pathways contributing to oxidative stress, a causative factor in diabetic cataractogenesis and retinopathy. This study evaluated the role for NHE-1 in diabetic cataract formation and retinal oxidative stress and apoptosis. Control and streptozotocin-diabetic rats were maintained with or without treatment with the NHE-1 inhibitor cariporide (Sanofi-Aventis, 10 mgkg-1d-1) for 3.5 months. In in vitro studies, bovine retinal pericytes and endothelial cells were cultured in 5 or 30 mM glucose, with or without 10 µM cariporide, for 7 days. A several-fold increase of the by-product of glycolysis, α-glycerophosphate, indicative of activation of the upper part of glycolysis, was present in both rat lens and retina at an early (1-month) stage of streptozotocin-diabetes. Cariporide did not affect diabetic hyperglycemia and counteracted lens oxidative-nitrative stress and p38 MAPK activation, without affecting glucose or sorbitol pathway intermediate accumulation. Cataract formation (indirect ophthalmoscopy and slit-lamp examination) was delayed, but not prevented. The number of TUNEL-positive cells per flat-mounted retina was increased 4.4-fold in diabetic rats (101 ± 17 vs. 23 ± 8 in controls , P<0.01), and this increase was attenuated by cariporide (45 ± 12, P<0.01). Nitrotyrosine and poly(ADP-ribose) fluorescence and percentage of TUNEL-positive cells were increased in pericytes and endothelial cells cultured in 30 mM glucose, and these changes were at least partially prevented by cariporide. In conclusion, NHE-1 contributes to diabetic cataract formation, and retinal oxidative-nitrative stress and apoptosis. The findings identify a new therapeutic target for diabetic ocular complications.


Subject(s)
Apoptosis , Cataract/pathology , Diabetes Complications/pathology , Oxidative Stress , Retina/pathology , Sodium-Hydrogen Exchangers/antagonists & inhibitors , Aldehydes/metabolism , Animals , Apoptosis/drug effects , Blood Glucose/metabolism , Blotting, Western , Cataract/blood , Cataract/drug therapy , Cattle , Diabetes Complications/blood , Diabetes Complications/drug therapy , Extracellular Signal-Regulated MAP Kinases/metabolism , Fasting/blood , Guanidines/pharmacology , Guanidines/therapeutic use , In Situ Nick-End Labeling , Lens, Crystalline/drug effects , Lens, Crystalline/enzymology , Lens, Crystalline/pathology , Male , Nitrosation/drug effects , Oxidative Stress/drug effects , Phosphorylation/drug effects , Poly(ADP-ribose) Polymerases/metabolism , Rats , Rats, Wistar , Sodium-Hydrogen Exchangers/metabolism , Sulfones/pharmacology , Sulfones/therapeutic use , Tyrosine/analogs & derivatives , Tyrosine/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...