Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 276(12): 8934-41, 2001 Mar 23.
Article in English | MEDLINE | ID: mdl-11121409

ABSTRACT

Lipoprotein lipase (LPL), the major enzyme responsible for the hydrolysis of circulating lipoprotein triglyceride molecules, is synthesized in myocytes and adipocytes but functions while bound to heparan sulfate proteoglycans (HSPGs) on the luminal surface of vascular endothelial cells. This requires transfer of LPL from the abluminal side to the luminal side of endothelial cells. Studies were performed to investigate the mechanisms of LPL transcytosis using cultured monolayers of bovine aortic endothelial cells. We tested whether HSPGs and members of the low density lipoprotein (LDL) receptor superfamily were involved in transfer of LPL from the basolateral to the apical side of cultured endothelial cells. Heparinase/heparinitase treatment of the basolateral cell surface or addition of heparin to the basolateral medium decreased the movement of LPL. This suggested a requirement for HSPGs. To assess the role of receptors, we used either receptor-associated protein, the 39-kDa inhibitor of ligand binding to the LDL receptor-related protein and the very low density lipoprotein (VLDL) receptor, or specific receptor antibodies. Receptor-associated protein reduced (125)I-LPL and LPL activity transfer across the monolayers. When the basolateral surface of the cells was treated with antibodies, only anti-VLDL receptor antibodies inhibited transcytosis. Moreover, overexpression of the VLDL receptor using adenoviral-mediated gene transfer increased LPL transcytosis. Thus, movement of active LPL across endothelial cells involves both HSPGs and VLDL receptor.


Subject(s)
Endothelium, Vascular/enzymology , Heparan Sulfate Proteoglycans/metabolism , Lipoprotein Lipase/metabolism , Receptors, LDL/metabolism , Animals , Cattle , Cells, Cultured , Endothelium, Vascular/cytology , Heymann Nephritis Antigenic Complex , Hot Temperature , Iodine Radioisotopes , Lipoprotein Lipase/antagonists & inhibitors , Membrane Glycoproteins/metabolism , Protein Transport
2.
Mol Cell Biochem ; 213(1-2): 1-9, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11129947

ABSTRACT

Altered lipoprotein lipase regulation associated with diabetes leading to the development of hypertriglyceridemia might be attributed to possible changes in content and the fine structure of heparan sulfate and its associated lipoprotein lipase. Adipocyte cell surface is the primary site of synthesis of lipoprotein lipase and the enzyme is bound to cell surface heparan sulfate proteoglycans via heparan sulfate side chains. In this study, the effect of diabetes on the production of adipocyte heparan sulfate and its sulfation (especially N-sulfation) were examined. Mouse 3T3-L1 adipocytes were exposed to high glucose (25 mM) and low glucose (5.55 mM) in the medium and cell-associated heparan sulfate was isolated and characterized. A significant decrease in total content of heparan sulfate was observed in adipocytes cultured under high glucose as compared to low glucose conditions. The degree of N-sulfation was-assessed through oligosaccharide mapping of heparan sulfate after chemical cleavages involving low pH (1.5) nitrous acid and hydrazinolysis/high pH (4.0) nitrous acid treatments; N-sulfation was found to be comparable between the adipocyte heparan sulfates produced under these glucose conditions. The activity and message levels for N-deacetylase/N-sulfotransferase, the enzyme responsible for N-sulfation in the biosynthesis of heparan sulfate, did not vary in adipocytes whether they were exposed to low or high glucose. While most cells or tissues in diabetic situations produce heparan sulfate with low-charge density concomitant with a decrease in N-sulfation, adipocyte cell system is an exception in this regard. Heparan sulfate from adipocytes cultured in low glucose conditions binds to lipoprotein lipase by the same order of magnitude as that derived from high glucose conditions. It is apparent that adipocytes cultured under high glucose conditions produce diminished levels of heparan sulfate (without significant changes in N-sulfation). In conclusion, it is possible that the reduction in heparan sulfate in diabetes could contribute to the decreased levels of heparan sulfate associated lipoprotein lipase, leading to diabetic hypertriglyceridemia.


Subject(s)
Adipocytes/metabolism , Glucose/metabolism , Heparitin Sulfate/metabolism , 3T3 Cells , Amidohydrolases/metabolism , Animals , Glucose/pharmacology , Heparitin Sulfate/biosynthesis , Heparitin Sulfate/chemistry , Lipoprotein Lipase/metabolism , Mice , Molecular Weight , Sulfotransferases/metabolism
3.
J Biol Chem ; 275(38): 29324-30, 2000 Sep 22.
Article in English | MEDLINE | ID: mdl-10882743

ABSTRACT

Lipoprotein lipase (LPL) physically associates with lipoproteins and hydrolyzes triglycerides. To characterize the binding of LPL to lipoproteins, we studied the binding of low density lipoproteins (LDL), apolipoprotein (apo) B17, and various apoB-FLAG (DYKDDDDK octapeptide) chimeras to purified LPL. LDL bound to LPL with high affinity (K(d) values of 10(-12) m) similar to that observed for the binding of LDL to its receptors and 1D1, a monoclonal antibody to LDL, and was greater than its affinity for microsomal triglyceride transfer protein. LDL-LPL binding was sensitive to both salt and detergents, indicating the involvement of both hydrophobic and hydrophilic interactions. In contrast, the N-terminal 17% of apoB interacted with LPL mainly via ionic interactions. Binding of various apoB fusion peptides suggested that LPL bound to apoB at multiple sites within apoB17. Tetrahydrolipstatin, a potent enzyme activity inhibitor, had no effect on apoB-LPL binding, indicating that the enzyme activity was not required for apoB binding. LDL-LPL binding was inhibited by monoclonal antibodies that recognize amino acids 380-410 in the C-terminal region of LPL, a region also shown to interact with heparin and LDL receptor-related protein. The LDL-LPL binding was also inhibited by glycosaminoglycans (GAGs); heparin inhibited the interactions by approximately 50% and removal of trace amounts of heparin from LPL preparations increased LDL binding. Thus, we conclude that the high affinity binding between LPL and lipoproteins involves multiple ionic and hydrophobic interactions, does not require enzyme activity and is modulated by GAGs. It is proposed that LPL contains a surface exposed positively charged amino acid cluster that may be important for various physiological interactions of LPL with different biologically important molecules. Moreover, we postulate that by binding to this cluster, GAGs modulate the association between LDL and LPL and the in vivo metabolism of LPL.


Subject(s)
Glycosaminoglycans/chemistry , Lipoprotein Lipase/chemistry , Lipoproteins/chemistry , Animals , COS Cells , Cattle , Enzyme Activation , Glycosaminoglycans/metabolism , Lipoprotein Lipase/metabolism , Lipoproteins/metabolism , Substrate Specificity
4.
Arterioscler Thromb Vasc Biol ; 20(1): 111-8, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10634807

ABSTRACT

Apolipoprotein E (apoE) and lipoprotein lipase (LPL), key proteins in the regulation of lipoprotein metabolism, bind with high affinity to heparin and cell-surface heparan sulfate proteoglycan (HSPG). In the present study, we tested whether the expression of apoE or LPL would modulate proteoglycan (PG) metabolism in cells. Two apoE-expressing cells, macrophages and fibroblasts, and LPL-expressing Chinese hamster ovary (CHO) cells were used to study the effect of apoE and LPL on PG production. Cellular PGs were metabolically labeled with (35)[S]sulfate for 20 hours, and medium, pericellular PGs, and intracellular PGs were assessed. In all transfected cells, PG levels in the 3 pools increased 1.6- to 3-fold when compared with control cells. Initial PG production was assessed from the time of addition of radiolabeled sulfate; at 1 hour, there was no difference in PG synthesis by apoE-expressing cells when compared with control cells. After 1 hour, apoE-expressing cells had significantly greater production of PGs. Total production assessed with [(3)H]glucosamine was also increased. This was due to an increase in the length of the glycosaminoglycan chains. To assess whether the increase in PGs was due to a decrease in PG degradation, a pulse-chase experiment was performed. Loss of sulfate-labeled pericellular PGs was similar in apoE and control cells, but more labeled PGs appeared in the medium of the apoE-expressing cells. Addition of exogenous apoE and anti-human apoE antibody to both non-apoE-expressing and apoE-expressing cells did not alter PG production. Moreover, LPL addition did not alter cell-surface PG metabolism. These results show that enhanced gene expression of apoE and LPL increases cellular PG production. We postulate that such changes in vascular PGs can affect the atherogenic potential of arteries.


Subject(s)
Apolipoproteins E/metabolism , Heparin/metabolism , Lipoprotein Lipase/metabolism , Proteoglycans/biosynthesis , Animals , Apolipoproteins E/genetics , Apolipoproteins E/pharmacology , Arteriosclerosis/etiology , Arteriosclerosis/genetics , Arteriosclerosis/metabolism , CHO Cells , Cell Line , Cricetinae , Gene Expression , Glycosaminoglycans/biosynthesis , Humans , Lipoprotein Lipase/genetics , Lipoprotein Lipase/pharmacology , Rabbits , Rats , Transfection
5.
J Biol Chem ; 274(51): 36403-8, 1999 Dec 17.
Article in English | MEDLINE | ID: mdl-10593935

ABSTRACT

Apolipoprotein E (apoE) is known to inhibit cell proliferation; however, the mechanism of this inhibition is not clear. We recently showed that apoE stimulates endothelial production of heparan sulfate (HS) enriched in heparin-like sequences. Because heparin and HS are potent inhibitors of smooth muscle cell (SMC) proliferation, in this study we determined apoE effects on SMC HS production and cell growth. In confluent SMCs, apoE (10 microg/ml) increased (35)SO(4) incorporation into PG in media by 25-30%. The increase in the medium was exclusively due to an increase in HSPGs (2.2-fold), and apoE did not alter chondroitin and dermatan sulfate proteoglycans. In proliferating SMCs, apoE inhibited [(3)H]thymidine incorporation into DNA by 50%; however, despite decreasing cell number, apoE increased the ratio of (35)SO(4) to [(3)H]thymidine from 2 to 3.6, suggesting increased HS per cell. Purified HSPGs from apoE-stimulated cells inhibited cell proliferation in the absence of apoE. ApoE did not inhibit proliferation of endothelial cells, which are resistant to heparin inhibition. Analysis of the conditioned medium from apoE-stimulated cells revealed that the HSPG increase was in perlecan and that apoE also stimulated perlecan mRNA expression by >2-fold. The ability of apoE isoforms to inhibit cell proliferation correlated with their ability to stimulate perlecan expression. An anti-perlecan antibody completely abrogated the antiproliferative effect of apoE. Thus, these data show that perlecan is a potent inhibitor of SMC proliferation and is required to mediate the antiproliferative effect of apoE. Because other growth modulators also regulate perlecan expression, this may be a key pathway in the regulation of SMC growth.


Subject(s)
Apolipoproteins E/pharmacology , Heparan Sulfate Proteoglycans , Heparitin Sulfate/physiology , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/physiology , Proteoglycans/physiology , Signal Transduction , Animals , Apolipoproteins E/metabolism , Cell Division/drug effects , Cells, Cultured , Humans , RNA, Messenger/analysis , RNA, Messenger/physiology , Rats , Signal Transduction/drug effects
6.
J Biol Chem ; 274(8): 4816-23, 1999 Feb 19.
Article in English | MEDLINE | ID: mdl-9988721

ABSTRACT

Reduced heparin and heparan sulfate (HS) proteoglycans (PG) have been observed in both inflammation and atherosclerosis. Methods to increase endogenous heparin and heparan sulfate are not known. We found that incubation of endothelial cells with 500-1,000 micrograms/ml high density lipoprotein (HDL) increased 35SO4 incorporation into PG by 1.5-2.5-fold. A major portion of this increase was in HS and was the result of increased synthesis. Total PG core proteins were not altered by HDL; however, the ratio of 35SO4 to [3H]glucosamine was increased by HDL, suggesting increased sulfation of glycosaminoglycans. In addition, HDL increased the amount of highly sulfated heparin-like HS in the subendothelial matrix. HS from HDL-treated cells bound 40 +/- 5% more 125I-antithrombin III (requires 3-O sulfated HS) and 49 +/- 3% fewer monocytes. Moreover, the HS isolated from HDL-treated cells inhibited smooth muscle cell proliferation (by 83 +/- 5%) better than control HS (56 +/- 6%) and heparin (42 +/- 6%). HDL isolated from apolipoprotein E (apoE)-null mice did not stimulate HS production unless apoE was added. ApoE also stimulated HS production in the absence of HDL. ApoE did not increase 35SO4 incorporation in macrophages and fibroblasts, suggesting that this is an endothelial cell-specific process. Receptor-associated protein inhibited apoE-mediated stimulation of HS only at higher (20 micrograms/ml) doses, suggesting the involvement of a receptor-associated protein-sensitive pathway in mediating apoE actions. In summary, our data identify a novel mechanism by which apoE and apoE-containing HDL can be anti-atherogenic. Identification of specific apoE peptides that stimulate endothelial heparin/HS production may have important therapeutic applications.


Subject(s)
Apolipoproteins E/metabolism , Endothelium, Vascular/metabolism , Heparitin Sulfate/biosynthesis , Lipoproteins, HDL/metabolism , Animals , Apolipoproteins E/antagonists & inhibitors , Arteriosclerosis/etiology , Arteriosclerosis/prevention & control , Cattle , Cells, Cultured , Endothelium, Vascular/cytology , Glycosaminoglycans/metabolism , Heparitin Sulfate/chemistry , Lipoproteins, HDL/chemistry , Mice , Mice, Knockout , Rats , Thrombosis/etiology , Thrombosis/prevention & control
7.
J Clin Invest ; 100(4): 867-74, 1997 Aug 15.
Article in English | MEDLINE | ID: mdl-9259586

ABSTRACT

Vessel wall subendothelial extracellular matrix, a dense mesh formed of collagens, fibronectin, laminin, and proteoglycans, has important roles in lipid and lipoprotein retention and cell adhesion. In atherosclerosis, vessel wall heparan sulfate proteoglycans (HSPG) are decreased and we therefore tested whether selective loss of HSPG affects lipoprotein retention. A matrix synthesized by aortic endothelial cells and a commercially available matrix (Matrigel; , Rutherford, NJ) were used. Treatment of matrix with heparinase/heparitinase (1 U/ml each) increased LDL binding by approximately 1.5-fold. Binding of lipoprotein (a) [Lp(a)] to both subendothelial matrix and Matrigel(R) increased 2-10-fold when the HSPG were removed by heparinase treatment. Incubation of endothelial cells with oxidized LDL (OxLDL) or lysolecithin resulted in decreased matrix proteoglycans and increased Lp(a) retention by matrix. The effect of OxLDL or lysolecithin on endothelial PG was abolished in the presence of HDL. The decrease in matrix HSPG was associated with production of a heparanase-like activity by OxLDL-stimulated endothelial cells. To test whether removal of HSPG exposes fibronectin, a candidate Lp(a) binding protein in the matrix, antifibronectin antibodies were used. The increased Lp(a) binding after HSPG removal was inhibited 60% by antifibronectin antibodies. Similarly, the increased Lp(a) binding to matrix from OxLDL-treated endothelial cells was inhibited by antifibronectin antibodies. We hypothesize that atherogenic lipoproteins stimulate endothelial cell production of heparanase. This enzyme reduces HSPG which in turn promotes Lp(a) retention.


Subject(s)
Endothelium/metabolism , Extracellular Matrix/metabolism , Heparitin Sulfate/metabolism , Lipoprotein(a)/metabolism , Lipoproteins, LDL/metabolism , Proteoglycans/metabolism , Animals , Cattle , Cells, Cultured , Chondroitin Lyases/pharmacology , Collagen/metabolism , Drug Combinations , Endothelium/drug effects , Fibronectins/metabolism , Heparan Sulfate Proteoglycans , Heparin Lyase , Laminin/metabolism , Lipoproteins, HDL/pharmacology , Lipoproteins, LDL/pharmacology , Lysophosphatidylcholines/pharmacology , Oxidation-Reduction , Polysaccharide-Lyases/pharmacology
8.
Arterioscler Thromb Vasc Biol ; 17(7): 1414-20, 1997 Jul.
Article in English | MEDLINE | ID: mdl-9261275

ABSTRACT

Lipoprotein lipase (LPL) is made by several cell types, including macrophages within the atherosclerotic lesion. LPL, a dimer of identical subunits, has high affinity for heparin and cell surface heparan sulfate proteoglycans (HSPGs). Several studies have shown that cell surface HSPGs can mediate cell binding to adhesion proteins. Here, we tested whether LPL, by virtue of its HSPG binding could mediate monocyte adhesion to surfaces. Monocyte binding to LPL-coated (1-25 micrograms/mL) tissue culture plates was 1.4- to 7-fold higher than that of albumin-treated plastic. Up to 3-fold more monocytes bound to the subendothelial matrix that had been pretreated with LPL. LPL also doubled the number of monocytes that bound to endothelial cells (ECs). Heparinase and heparitinase treatment of monocytes or incubation of monocytes with heparin decreased monocyte binding to LPL. Heparinase/heparitinase treatment of the matrix also abolished the LPL-mediated increase in monocyte binding. These results suggest that LPL dimers mediate monocyte binding by forming a "bridge" between matrix and monocyte surface HSPGs. Inhibition of LPL activity with tetrahydrolipstatin, a lipase active-site inhibitor, did not affect the LPL-mediated monocyte binding. To assess whether specific oligosaccharide sequences in HSPGs mediated monocyte binding to LPL, competition experiments were performed by using known HSPG binding proteins. Neither antithrombin nor thrombin inhibited monocyte binding to LPL. Next, we tested whether integrins were involved in monocyte binding to LPL. Surprisingly, monocyte binding to LPL-coated plastic and matrix was inhibited by approximately 35% via integrin-binding arginine-glycine-aspartic acid peptides. This result suggests that monocyte binding to LPL was mediated, in part, by monocyte cell surface integrins. In summary, our data show that LPL, which is present on ECs and in the subendothelial matrix, can augment monocyte adherence. This increase in monocyte-matrix interaction could promote macrophage accumulation within arteries.


Subject(s)
Cell Adhesion Molecules/metabolism , Cell Adhesion , Lipoprotein Lipase/metabolism , Monocytes/cytology , Animals , Cattle , Heparan Sulfate Proteoglycans , Heparin/pharmacology , Heparin Lyase , Heparitin Sulfate/metabolism , Integrins/metabolism , Milk/enzymology , Oligopeptides , Polysaccharide-Lyases/pharmacology , Proteoglycans/metabolism
9.
J Lipid Res ; 37(11): 2439-49, 1996 Nov.
Article in English | MEDLINE | ID: mdl-8978495

ABSTRACT

Lipoprotein lipase (LPL), the major enzyme responsible for the hydrolysis of triglycerides, is primarily synthesized by adipocytes and myocytes. In addition to synthesis, degradation of cell surface-associated LPL is thought to be important in regulating production of the enzyme. We studied LPL metabolism in the LPL synthesizing adipocyte cell line BFC-1 beta and assessed the contributions of cell surface heparan sulfate proteoglycans (HSPG), low density lipoprotein receptor related protein (LRP), and glycosylphosphatidylinositol (GPI)-linked proteins to LPL uptake and degradation by these cells. Adipocytes degraded 10-12% of total cell surface I-labeled LPL in 2 h and 23-28% in 4 h. In 1 h, 30-54% of the degradation was inhibited by the 39 kDa receptor associated protein (RAP), an inhibitor of ligand binding to LRP. At 4 h, only 19-23% of the LPL degradation was RAP inhibitable. This suggested that two pathways with different kinetics were important for LPL degradation. Heparinase/heparitinase treatment of cells showed that most LPL degradation required the presence of HSPG. Treatment with phosphatidylinositol-specific phospholipase C (PIPLC) inhibited 125I-labeled LPL degradation by 13%. However, neither RAP nor PIPLC treatment of adipocytes significantly increased the amount of endogenously produced LPL activity in the media. To determine whether direct uptake of LPL bound to HSPG could account for the non-RAP sensitive LPL uptake and degradation, proteoglycan metabolism was assessed by labeling cells with 35SO4. Of the total pericellular proteoglycans, 14% were PIPLC releasable; surprisingly, 30% were dissociated from the cells with heparin. The amount of labeled pericellular proteoglycans decreased 26% in 2 h and 50% in 8 h, rapid enough to account for at least half of the degradation of cell surface LPL. We conclude that adipocytes degrade a fraction of the cell surface LPL, and that this process is mediated by both proteoglycans and RAP-sensitive receptors.


Subject(s)
Adipose Tissue/metabolism , Carrier Proteins/metabolism , Glycoproteins/metabolism , Lipoprotein Lipase/metabolism , Molecular Chaperones/metabolism , Proteoglycans/metabolism , Animals , CHO Cells , Cricetinae , Heparin/metabolism , Heparin Lyase , LDL-Receptor Related Protein-Associated Protein , Phosphatidylinositol Diacylglycerol-Lyase , Phosphoinositide Phospholipase C , Phosphoric Diester Hydrolases/metabolism , Polysaccharide-Lyases/metabolism
10.
J Biol Chem ; 270(50): 29760-5, 1995 Dec 15.
Article in English | MEDLINE | ID: mdl-8530367

ABSTRACT

The cause and consequence of altered proteoglycans in atherosclerosis are poorly understood. To determine whether proteoglycans affect monocyte binding, we studied the effects of heparin and proteoglycan degrading enzymes on THP-1 monocyte adhesion to subendothelial matrix (SEM). Monocyte binding increased about 2-fold after SEM was treated with heparinase. In addition, heparin decreased monocyte binding to fibronectin, a known SEM protein, by 60%. These data suggest that SEM heparan sulfate inhibits monocyte binding to SEM proteins. We next examined whether lysolecithin, a constituent of modified lipoproteins, affects endothelial heparan sulfate proteoglycan (HSPG) production and monocyte binding. Lysolecithin (10-200 microM) decreased total 35SO4 in SEM (20-75%). 2-fold more monocytes bound to SEM from lysolecithin treated cells than to control SEM. Heparinase treatment did not further increase monocyte binding to lysolecithin-treated SEM. HSPG degrading activity was found in medium from lysolecithin-treated but not control cells. 35SO4-labeled products obtained from labeled matrix treated with lysolecithin-conditioned medium were similar in size to those generated by heparinase. These data suggest that lysolecithin-treated endothelial cells secrete a heparanase-like activity. We hypothesize that decreased vessel wall HSPG, as occurs in atherogenic conditions, allows increased monocyte retention within the vessel and is due to the actions of an endothelial heparanase.


Subject(s)
Endothelium, Vascular/physiology , Heparitin Sulfate/metabolism , Lysophosphatidylcholines/pharmacology , Monocytes/physiology , Proteoglycans/metabolism , Animals , Aorta , Autoradiography/methods , Cattle , Cell Adhesion/drug effects , Cell Line , Cells, Cultured , Chondroitinases and Chondroitin Lyases/pharmacology , Culture Media, Conditioned , Electrophoresis, Polyacrylamide Gel , Endothelium, Vascular/drug effects , Heparan Sulfate Proteoglycans , Heparin Lyase , Heparitin Sulfate/biosynthesis , Heparitin Sulfate/isolation & purification , Humans , Kinetics , Lipoproteins, LDL/pharmacology , Monocytes/cytology , Monocytes/drug effects , Polysaccharide-Lyases/metabolism , Polysaccharide-Lyases/pharmacology , Proteoglycans/biosynthesis , Proteoglycans/isolation & purification , Sulfates/metabolism
11.
Arterioscler Thromb Vasc Biol ; 15(3): 400-9, 1995 Mar.
Article in English | MEDLINE | ID: mdl-7749850

ABSTRACT

Lipoprotein lipase (LpL), which facilitates lipoprotein uptake by macrophages, associates with the cell surface by binding to proteoglycans (PGs). Studies were designed to identify and characterize specific PGs that serve as receptors for LpL and to examine effects of cell differentiation on LpL binding. PG synthesis was examined by radiolabeling THP-1 monocytes and macrophages (a cell line originally derived from a patient with acute monocytic leukemia) with [35S]sodium sulfate and [3H]serine or [3H]glucosamine. Radiolabeled PGs isolated from the cell surface were purified by chromatography and identified as chondroitin-4-sulfate (CS) PG and heparan sulfate (HS) PG. A sixfold increase in CSPG and an 11-fold increase in HSPG accompanied cell differentiation. Whereas HS glycosaminoglycan chains from both monocytes and macrophages were 7.5 kD in size, CS chains increased in size from 17 kD to 36 kD with cell differentiation, and contained hexuronyl N-acetylgalactosamine-4,6-di-O sulfate disaccharides. LpL binding was sevenfold higher to differentiated cells, and affinity chromatography demonstrated that two cell surface PGs bound to LpL: HSPG and the oversulfated CSPG produced only by differentiated cells. We conclude that differentiation-associated changes in cell surface PG of human macrophages have functional consequences that could increase the atherogenic potential of the cells.


Subject(s)
Chondroitin Sulfate Proteoglycans/metabolism , Heparitin Sulfate/metabolism , Lipoprotein Lipase/metabolism , Macrophages/metabolism , Macrophages/pathology , Proteoglycans/metabolism , Cell Differentiation , Cell Membrane/metabolism , Chondroitin Sulfate Proteoglycans/chemistry , Disaccharides/metabolism , Heparan Sulfate Proteoglycans , Humans , Proteoglycans/biosynthesis , Proteoglycans/chemistry , Tumor Cells, Cultured
12.
J Biol Chem ; 269(24): 16559-65, 1994 Jun 17.
Article in English | MEDLINE | ID: mdl-8206972

ABSTRACT

Adipose tissue contains substantial stores of retinoid (retinol+retinyl ester) that, quantitatively, are second only to retinoid stores in the liver. Our studies show that retinoid levels in adipose tissue are markedly influenced by dietary retinoid intake. Because lipoprotein lipase (LPL) increases the uptake of lipoproteins and lipid emulsion particles by many cell types including adipocytes, we investigated whether LPL also increases retinoid uptake by adipocytes from lipid-containing particles. Addition of LPL (10 micrograms/ml) to BFC-1 beta adipocytes produced a 2-fold increase in cellular uptake of [3H]retinoid from a lipid emulsion containing [3H]retinyl ester. Heparin, which displaces LPL from binding sites on cell surface proteoglycans, increased [3H]retinoid uptake by an additional 2-fold. High performance liquid chromatography analyses showed that greater than 75% of the media and 85% of the cellular radioactivity was present as retinol. The conversion of retinyl ester to retinol by LPL was then assessed using model retinyl ester containing lipid emulsions. Although triglyceride appears to be the preferred substrate for LPL, after greater than 25% of the triglyceride was hydrolyzed, significant amounts of retinyl ester were hydrolyzed by LPL. Retinyl ester hydrolysis was increased approximately 20-fold in the presence of a source of apolipoprotein C-II. The physiologically significant palmitate, stearate, oleate, and linoleate esters of retinol were all hydrolyzed by LPL. When LPL was incubated with [3H]retinyl ester containing rabbit mesenteric chylomicrons and in the presence of heparin and apolipoprotein C-II, the LPL was able to completely hydrolyze the retinyl ester to retinol. Thus, LPL is able to catalyze the hydrolysis of retinyl esters and, through the process of hydrolysis, may facilitate uptake of retinoid by adipocytes.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Lipoprotein Lipase/metabolism , Liver/metabolism , Retinoids/metabolism , Vitamin A/metabolism , Animals , Biological Transport , Cattle , Cell Line , Chylomicrons/metabolism , Esters/metabolism , Female , Humans , Hydrolysis , Lipoproteins, LDL/metabolism , Male , Milk/enzymology , Rats , Substrate Specificity , Vitamin A/blood
13.
J Biol Chem ; 269(18): 13129-35, 1994 May 06.
Article in English | MEDLINE | ID: mdl-8175739

ABSTRACT

Lipoprotein lipase (LPL) increases the cellular uptake and degradation of LDL by fibroblasts and macrophages via a heparin-sensitive process. The roles of the LDL receptor, LDL receptor-related protein (LRP), and proteoglycans in this process were studied. In up-regulated human fibroblasts, LPL increased degradation of 125I-low density lipoprotein (LDL) (5 micrograms/ml) only 30% during a 6-h incubation at 37 degrees C. Monoclonal antibody 47 (which interacts with the receptor binding region of apoB) decreased LDL degradation 93% in the absence of LPL, but did not reduce the LPL-mediated increase in degradation. In contrast, addition of the 39-kDa receptor-associated protein (RAP) caused a 43% decrease in the LPL-dependent LDL degradation in non-up-regulated fibroblasts. Monoclonal antibody 47 did not decrease LDL degradation by THP-1 macrophages and RAP caused a < 13% decrease in LPL-mediated LDL degradation. LPL also increased the association of acetyl LDL with the surface of the macrophages but did not increase acetyl LDL degradation. The kinetics of LPL-mediated LDL metabolism in macrophages was then compared with that in fibroblasts. The half-lives of cell surface LDL and LPL during a subsequent 37 degrees C incubation were approximately 1 h in THP-1 cells versus 6 h in fibroblasts. In addition, 50% of the 125I-LDL and 30% of the 125I-LPL were degraded within 3 h. After metabolic labeling of THP-1 proteoglycans with 35SO4, > 30% of pericellular heparan sulfate was lost between 2-4 h of the chase period. Therefore, some of the LPL-mediated LDL degradation in the THP-1 cells could be accounted for by internalization of cell surface proteoglycans. We conclude that LRP, but not the LDL receptor, is involved in LPL-mediated degradation of LDL in fibroblasts. This process is much more rapid in THP-1 cells and in addition to LRP may involve other receptors and internalization of proteoglycans.


Subject(s)
Fibroblasts/metabolism , Lipoprotein Lipase/metabolism , Lipoproteins, LDL/metabolism , Macrophages/metabolism , Acetylation , Cell Line , Heparan Sulfate Proteoglycans , Heparitin Sulfate/metabolism , Humans , Kinetics , Proteoglycans/metabolism , Receptors, LDL/physiology , Up-Regulation
14.
J Clin Invest ; 90(4): 1504-12, 1992 Oct.
Article in English | MEDLINE | ID: mdl-1401083

ABSTRACT

Lipoprotein lipase (LPL), the rate limiting enzyme for hydrolysis of lipoprotein triglyceride, also mediates nonenzymatic interactions between lipoproteins and heparan sulfate proteoglycans. To determine whether cell surface LPL increases LDL binding to cells, bovine milk LPL was added to upregulated and nonupregulated human fibroblasts along with media containing LDL. LDL binding to cells was increased 2-10-fold, in a dose-dependent manner, by the addition of 0.5-10 micrograms/ml of LPL. The amount of LDL bound to the cells in the presence of LPL far exceeded the capacity for LDL binding via the LDL receptor. Treatment of fibroblasts with heparinase and heparitinase resulted in a 64% decrease in LPL-mediated LDL binding. Compared to studies performed without LPL, more LDL was internalized and degraded in the presence of LPL, but the time course was slower than that of classical lipoprotein receptor mediated pathways. In LDL receptor negative fibroblasts, LPL increased surface bound LDL > 140-fold, intracellular LDL > 40-fold, and LDL degradation > 6-fold. These effects were almost completely inhibited by heparin and anti-LPL monoclonal antibody. LPL also increased the binding and uptake by fibroblasts of apolipoprotein-free triglyceride emulsions; binding was increased > 8-fold and cellular uptake was increased > 40-fold with LPL. LPL increased LDL binding to THP-1 monocytes, and increased LDL uptake (4.5-fold) and LDL degradation (2.5-fold) by THP-1 macrophages. In the absence of added LPL, heparin and anti-LPL monoclonal antibodies decreased LDL degradation by > 40%, and triglyceride emulsion uptake by > 50%, suggesting that endogenously produced LPL mediated lipid particle uptake and degradation. We conclude that LPL increases lipid and lipoprotein uptake by cells via a pathway not involving the LDL receptor. This pathway may be important for lipid accumulation in LPL synthesizing cells.


Subject(s)
Fibroblasts/metabolism , Lipoprotein Lipase/pharmacology , Lipoproteins, LDL/metabolism , Macrophages/metabolism , Animals , Cattle , Cells, Cultured , Emulsions , Heparin Lyase , Humans , Polysaccharide-Lyases/pharmacology , Receptors, LDL/physiology , Triglycerides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...