Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Eur J Neurosci ; 21(7): 1931-42, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15869486

ABSTRACT

Arousal depends on the concerted activity of the ascending arousal system (AAS) but specific stimuli may primarily activate some nuclei of this system. Motivated behaviours are characterized by behavioural arousal, although it is not known which AAS nuclei are active during a motivated behaviour. To address this issue, rats were rendered motivated for food by fasting them for 1 day and then were enticed with food that they could not obtain for varying periods of time. We studied the level of arousal by polysomnography or radiotelemetry, and Fos-ir in the AAS, during food enticing. We found a strong arousal and an early increase in Fos-ir in the histaminergic neurons from the tuberomammillary nucleus, after 30 min of enticing, followed by increased Fos-ir in the whole AAS if food enticing was prolonged to 1 or 2 hours. In contrast, food presentation to non-motivated rats did not increase arousal or Fos-ir in the tuberomammillary nucleus. As opposed to the active arousal of the motivated rats, passive arousal induced by sensory stimulation was associated with increased Fos-ir in the locus coeruleus and the orexin neurons, but not with increased Fos-ir in the tuberomammillary nucleus or in the other nuclei of the AAS. We conclude that the arousal during feeding-related motivated behaviour is associated primarily with the activation of the tuberomammillary nucleus, while the other arousal-related nuclei become active later on.


Subject(s)
Arousal/physiology , Feeding Behavior/physiology , Gene Expression Regulation/physiology , Histamine/metabolism , Motivation , Neurons/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Afferent Pathways/cytology , Afferent Pathways/metabolism , Animals , Behavior, Animal , Body Temperature/physiology , Cell Count/methods , Food , Hypothalamus/cytology , Hypothalamus/metabolism , Immunohistochemistry/methods , Male , Motor Activity/physiology , Rats , Rats, Sprague-Dawley , Time Factors , Tyrosine 3-Monooxygenase/metabolism
3.
J Neurophysiol ; 84(5): 2699-702, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11068012

ABSTRACT

During specific rapid eye movement (REM) sleep deprivation its homeostatic regulation is expressed by progressively more frequent attempts to enter REM and by a compensatory rebound after the deprivation ends. The buildup of pressure to enter REM may be hypothesized to depend just on the time elapsed without REM or to be differentially related to non-REM (NREM) and wakefulness. This problem bears direct implications on the issue of the function of REM and its relation to NREM. We compared three protocols that combined REM-specific and total sleep deprivation so that animals underwent similar 3-h REM deprivations but different concomitant NREM deprivations for the first 2 (2T1R), 1 (1T2R), or 0 (3R) hours. Deprivation periods started at hour 6 after lights on. Twenty-two chronically implanted rats were recorded. The median amount of REM during all three protocols was approximately 1 min. The deficits of median amount of NREM in minutes within the 3-h deprivation periods as compared with their baselines were, respectively for 2T1R, 1T2R, and 3R, 35 (43%), 25 (25%), and 7 (7%). Medians of REM rebound in the three succeeding hours, in minutes above baseline, were, respectively, 8 (44%), 9 (53%), and 9 (50%), showing no significant differences among protocols. Attempted transitions to REM showed a rising trend during REM deprivations reaching a final value that did not differ significantly among the three protocols. These results support the hypothesis that the build up of REM pressure and its subsequent rebound is primarily related to REM absence independent of the presence of NREM.


Subject(s)
Homeostasis/physiology , Sleep Deprivation/physiopathology , Sleep, REM/physiology , Animals , Electroencephalography , Rats , Rats, Sprague-Dawley , Sleep/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...