Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Metab ; 82: 101912, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458566

ABSTRACT

OBJECTIVE: Skeletal muscle plasticity and remodeling are critical for adapting tissue function to use, disuse, and regeneration. The aim of this study was to identify genes and molecular pathways that regulate the transition from atrophy to compensatory hypertrophy or recovery from injury. Here, we have used a mouse model of hindlimb unloading and reloading, which causes skeletal muscle atrophy, and compensatory regeneration and hypertrophy, respectively. METHODS: We analyzed mouse skeletal muscle at the transition from hindlimb unloading to reloading for changes in transcriptome and extracellular fluid proteome. We then used qRT-PCR, immunohistochemistry, and bulk and single-cell RNA sequencing data to determine Mustn1 gene and protein expression, including changes in gene expression in mouse and human skeletal muscle with different challenges such as exercise and muscle injury. We generated Mustn1-deficient genetic mouse models and characterized them in vivo and ex vivo with regard to muscle function and whole-body metabolism. We isolated smooth muscle cells and functionally characterized them, and performed transcriptomics and proteomics analysis of skeletal muscle and aorta of Mustn1-deficient mice. RESULTS: We show that Mustn1 (Musculoskeletal embryonic nuclear protein 1, also known as Mustang) is highly expressed in skeletal muscle during the early stages of hindlimb reloading. Mustn1 expression is transiently elevated in mouse and human skeletal muscle in response to intense exercise, resistance exercise, or injury. We find that Mustn1 expression is highest in smooth muscle-rich tissues, followed by skeletal muscle fibers. Muscle from heterozygous Mustn1-deficient mice exhibit differences in gene expression related to extracellular matrix and cell adhesion, compared to wild-type littermates. Mustn1-deficient mice have normal muscle and aorta function and whole-body glucose metabolism. We show that Mustn1 is secreted from smooth muscle cells, and that it is present in arterioles of the muscle microvasculature and in muscle extracellular fluid, particularly during the hindlimb reloading phase. Proteomics analysis of muscle from Mustn1-deficient mice confirms differences in extracellular matrix composition, and female mice display higher collagen content after chemically induced muscle injury compared to wild-type littermates. CONCLUSIONS: We show that, in addition to its previously reported intracellular localization, Mustn1 is a microprotein secreted from smooth muscle cells into the muscle extracellular space. We explore its role in muscle ECM deposition and remodeling in homeostasis and upon muscle injury. The role of Mustn1 in fibrosis and immune infiltration upon muscle injury and dystrophies remains to be investigated, as does its potential for therapeutic interventions.


Subject(s)
Micropeptides , Muscle, Skeletal , Animals , Female , Humans , Mice , Extracellular Matrix/metabolism , Hypertrophy/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Myocytes, Smooth Muscle/metabolism
2.
ACS Chem Neurosci ; 15(3): 456-461, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38251903

ABSTRACT

The recent development of genetically encoded fluorescent neurotransmitter biosensors has opened the door to recording serotonin (5-hydroxytryptamine, 5-HT) signaling dynamics with high temporal and spatial resolution in vivo. While this represents a significant step forward for serotonin research, the utility of available 5-HT biosensors remains to be fully established under diverse in vivo conditions. Here, we used two-photon microscopy in awake mice to examine the effectiveness of specific 5-HT biosensors for monitoring 5-HT dynamics in somatosensory cortex. Initial experiments found that whisker stimulation evoked a striking change in 5-HT biosensor signal. However, similar changes were observed in controls expressing green fluorescent protein, suggesting a potential hemodynamic artifact. Subsequent use of a second control fluorophore with emission peaks separated from the 5-HT biosensor revealed a reproducible, stimulus-locked increase in 5-HT signal. Our data highlight the promise of 5-HT biosensors for in vivo application, provided measurements are carried out with appropriate optical controls.


Subject(s)
Neocortex , Serotonin , Mice , Animals , Serotonin/metabolism , Microscopy , Neocortex/metabolism , Signal Transduction , Neurotransmitter Agents/metabolism , Mammals/metabolism
3.
Cereb Cortex ; 33(7): 3944-3959, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36104852

ABSTRACT

The claustrum is known for its extensive connectivity with many other forebrain regions, but its elongated shape and deep location have made further study difficult. We have sought to understand when mouse claustrum neurons are born, where they are located in developing brains, and when they develop their widespread connections to the cortex. We established that a well-characterized parvalbumin plexus, which identifies the claustrum in adults, is only present from postnatal day (P) 21. A myeloarchitectonic outline of the claustrum can be derived from a triangular fiber arrangement from P15. A dense patch of Nurr1+ cells is present at its core and is already evident at birth. Bromodeoxyuridine birth dating of forebrain progenitors reveals that the majority of claustrum neurons are born during a narrow time window centered on embryonic day 12.5, which is later than the adjacent subplate and endopiriform nucleus. Retrograde tracing revealed that claustrum projections to anterior cingulate (ACA) and retrosplenial cortex (RSP) follow distinct developmental trajectories. Claustrum-ACA connectivity matures rapidly and reaches adult-like innervation density by P10, whereas claustrum-RSP innervation emerges later over a protracted time window. This work establishes the timeline of claustrum development and provides a framework for understanding how the claustrum is built and develops its unique connectivity.


Subject(s)
Claustrum , Mice , Animals , Basal Ganglia/physiology , Neural Pathways/physiology , Gyrus Cinguli , Neurons
4.
Int J Mol Sci ; 22(4)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670433

ABSTRACT

Friedreich's ataxia is an autosomal recessive neurogenetic disease that is mainly associated with atrophy of the spinal cord and progressive neurodegeneration in the cerebellum. The disease is caused by a GAA-expansion in the first intron of the frataxin gene leading to a decreased level of frataxin protein, which results in mitochondrial dysfunction. Currently, there is no effective treatment to delay neurodegeneration in Friedreich's ataxia. A plausible therapeutic approach is gene therapy. Indeed, Friedreich's ataxia mouse models have been treated with viral vectors en-coding for either FXN or neurotrophins, such as brain-derived neurotrophic factor showing promising results. Thus, gene therapy is increasingly consolidating as one of the most promising therapies. However, several hurdles have to be overcome, including immunotoxicity and pheno-toxicity. We review the state of the art of gene therapy in Friedreich's ataxia, addressing the main challenges and the most feasible solutions for them.


Subject(s)
Friedreich Ataxia , Genetic Therapy , Iron-Binding Proteins , Animals , Disease Models, Animal , Friedreich Ataxia/genetics , Friedreich Ataxia/metabolism , Friedreich Ataxia/therapy , Humans , Iron-Binding Proteins/biosynthesis , Iron-Binding Proteins/genetics , Mice , Frataxin
SELECTION OF CITATIONS
SEARCH DETAIL
...