Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Cell Rep Methods ; 4(7): 100817, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38981473

ABSTRACT

Deep-learning tools that extract prognostic factors derived from multi-omics data have recently contributed to individualized predictions of survival outcomes. However, the limited size of integrated omics-imaging-clinical datasets poses challenges. Here, we propose two biologically interpretable and robust deep-learning architectures for survival prediction of non-small cell lung cancer (NSCLC) patients, learning simultaneously from computed tomography (CT) scan images, gene expression data, and clinical information. The proposed models integrate patient-specific clinical, transcriptomic, and imaging data and incorporate Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome pathway information, adding biological knowledge within the learning process to extract prognostic gene biomarkers and molecular pathways. While both models accurately stratify patients in high- and low-risk groups when trained on a dataset of only 130 patients, introducing a cross-attention mechanism in a sparse autoencoder significantly improves the performance, highlighting tumor regions and NSCLC-related genes as potential biomarkers and thus offering a significant methodological advancement when learning from small imaging-omics-clinical samples.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Deep Learning , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/pathology , Tomography, X-Ray Computed/methods , Biomarkers, Tumor/genetics , Prognosis , Male , Female , Gene Expression Regulation, Neoplastic , Transcriptome
2.
Hum Mol Genet ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38850567

ABSTRACT

Alterations in Dp71 expression, the most ubiquitous dystrophin isoform, have been associated with patient survival across tumours. Intriguingly, in certain malignancies, Dp71 acts as a tumour suppressor, while manifesting oncogenic properties in others. This diversity could be explained by the expression of two Dp71 splice variants encoding proteins with distinct C-termini, each with specific properties. Expression of these variants has impeded the exploration of their unique roles. Using CRISPR/Cas9, we ablated the Dp71f variant with the alternative C-terminus in a sarcoma cell line not expressing the canonical C-terminal variant, and conducted molecular (RNAseq) and functional characterisation of the knockout cells. Dp71f ablation induced major transcriptomic alterations, particularly affecting the expression of genes involved in calcium signalling and ECM-receptor interaction pathways. The genome-scale metabolic analysis identified significant downregulation of glucose transport via membrane vesicle reaction (GLCter) and downregulated glycolysis/gluconeogenesis pathway. Functionally, these molecular changes corresponded with, increased calcium responses, cell adhesion, proliferation, survival under serum starvation and chemotherapeutic resistance. Knockout cells showed reduced GLUT1 protein expression, survival without attachment and their migration and invasion in vitro and in vivo were unaltered, despite increased matrix metalloproteinases release. Our findings emphasise the importance of alternative splicing of dystrophin transcripts and underscore the role of the Dp71f variant, which appears to govern distinct cellular processes frequently dysregulated in tumour cells. The loss of this regulatory mechanism promotes sarcoma cell survival and treatment resistance. Thus, Dp71f is a target for future investigations exploring the intricate functions of specific DMD transcripts in physiology and across malignancies.

3.
Trends Cell Biol ; 34(2): 85-89, 2024 02.
Article in English | MEDLINE | ID: mdl-38087709

ABSTRACT

Artificial intelligence (AI) is widely used for exploiting multimodal biomedical data, with increasingly accurate predictions and model-agnostic interpretations, which are however also agnostic to biological mechanisms. Combining metabolic modelling, 'omics, and imaging data via multimodal AI can generate predictions that can be interpreted mechanistically and transparently, therefore with significantly higher therapeutic potential.


Subject(s)
Artificial Intelligence , Multiomics , Models, Biological
4.
Methods Mol Biol ; 2553: 325-393, 2023.
Article in English | MEDLINE | ID: mdl-36227551

ABSTRACT

Breast cancer is one of the most common cancers in women worldwide, which causes an enormous number of deaths annually. However, early diagnosis of breast cancer can improve survival outcomes enabling simpler and more cost-effective treatments. The recent increase in data availability provides unprecedented opportunities to apply data-driven and machine learning methods to identify early-detection prognostic factors capable of predicting the expected survival and potential sensitivity to treatment of patients, with the final aim of enhancing clinical outcomes. This tutorial presents a protocol for applying machine learning models in survival analysis for both clinical and transcriptomic data. We show that integrating clinical and mRNA expression data is essential to explain the multiple biological processes driving cancer progression. Our results reveal that machine-learning-based models such as random survival forests, gradient boosted survival model, and survival support vector machine can outperform the traditional statistical methods, i.e., Cox proportional hazard model. The highest C-index among the machine learning models was recorded when using survival support vector machine, with a value 0.688, whereas the C-index recorded using the Cox model was 0.677. Shapley Additive Explanation (SHAP) values were also applied to identify the feature importance of the models and their impact on the prediction outcomes.


Subject(s)
Breast Neoplasms , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Female , Humans , Machine Learning , RNA, Messenger , Survival Analysis , Transcriptome
5.
Elife ; 112022 09 27.
Article in English | MEDLINE | ID: mdl-36164827

ABSTRACT

Duchenne muscular dystrophy (DMD) affects myofibers and muscle stem cells, causing progressive muscle degeneration and repair defects. It was unknown whether dystrophic myoblasts-the effector cells of muscle growth and regeneration-are affected. Using transcriptomic, genome-scale metabolic modelling and functional analyses, we demonstrate, for the first time, convergent abnormalities in primary mouse and human dystrophic myoblasts. In Dmdmdx myoblasts lacking full-length dystrophin, the expression of 170 genes was significantly altered. Myod1 and key genes controlled by MyoD (Myog, Mymk, Mymx, epigenetic regulators, ECM interactors, calcium signalling and fibrosis genes) were significantly downregulated. Gene ontology analysis indicated enrichment in genes involved in muscle development and function. Functionally, we found increased myoblast proliferation, reduced chemotaxis and accelerated differentiation, which are all essential for myoregeneration. The defects were caused by the loss of expression of full-length dystrophin, as similar and not exacerbated alterations were observed in dystrophin-null Dmdmdx-ßgeo myoblasts. Corresponding abnormalities were identified in human DMD primary myoblasts and a dystrophic mouse muscle cell line, confirming the cross-species and cell-autonomous nature of these defects. The genome-scale metabolic analysis in human DMD myoblasts showed alterations in the rate of glycolysis/gluconeogenesis, leukotriene metabolism, and mitochondrial beta-oxidation of various fatty acids. These results reveal the disease continuum: DMD defects in satellite cells, the myoblast dysfunction affecting muscle regeneration, which is insufficient to counteract muscle loss due to myofiber instability. Contrary to the established belief, our data demonstrate that DMD abnormalities occur in myoblasts, making these cells a novel therapeutic target for the treatment of this lethal disease.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Myoblasts , Animals , Calcium/metabolism , Dystrophin/genetics , Fatty Acids/metabolism , Humans , Leukotrienes/metabolism , Mice , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Myoblasts/pathology
6.
Methods Mol Biol ; 2399: 87-122, 2022.
Article in English | MEDLINE | ID: mdl-35604554

ABSTRACT

Complex, distributed, and dynamic sets of clinical biomedical data are collectively referred to as multimodal clinical data. In order to accommodate the volume and heterogeneity of such diverse data types and aid in their interpretation when they are combined with a multi-scale predictive model, machine learning is a useful tool that can be wielded to deconstruct biological complexity and extract relevant outputs. Additionally, genome-scale metabolic models (GSMMs) are one of the main frameworks striving to bridge the gap between genotype and phenotype by incorporating prior biological knowledge into mechanistic models. Consequently, the utilization of GSMMs as a foundation for the integration of multi-omic data originating from different domains is a valuable pursuit towards refining predictions. In this chapter, we show how cancer multi-omic data can be analyzed via multimodal machine learning and metabolic modeling. Firstly, we focus on the merits of adopting an integrative systems biology led approach to biomedical data mining. Following this, we propose how constraint-based metabolic models can provide a stable yet adaptable foundation for the integration of multimodal data with machine learning. Finally, we provide a step-by-step tutorial for the combination of machine learning and GSMMs, which includes: (i) tissue-specific constraint-based modeling; (ii) survival analysis using time-to-event prediction for cancer; and (iii) classification and regression approaches for multimodal machine learning. The code associated with the tutorial can be found at https://github.com/Angione-Lab/Tutorials_Combining_ML_and_GSMM .


Subject(s)
Machine Learning , Neoplasms , Data Mining , Genome , Humans , Neoplasms/genetics , Systems Biology
7.
IEEE/ACM Trans Comput Biol Bioinform ; 18(6): 2339-2352, 2021.
Article in English | MEDLINE | ID: mdl-32248120

ABSTRACT

Computational modelling of metabolic processes has proven to be a useful approach to formulate our knowledge and improve our understanding of core biochemical systems that are crucial to maintaining cellular functions. Towards understanding the broader role of metabolism on cellular decision-making in health and disease conditions, it is important to integrate the study of metabolism with other core regulatory systems and omics within the cell, including gene expression patterns. After quantitatively integrating gene expression profiles with a genome-scale reconstruction of human metabolism, we propose a set of combinatorial methods to reverse engineer gene expression profiles and to find pairs and higher-order combinations of genetic modifications that simultaneously optimize multi-objective cellular goals. This enables us to suggest classes of transcriptomic profiles that are most suitable to achieve given metabolic phenotypes. We demonstrate how our techniques are able to compute beneficial, neutral or "toxic" combinations of gene expression levels. We test our methods on nine tissue-specific cancer models, comparing our outcomes with the corresponding normal cells, identifying genes as targets for potential therapies. Our methods open the way to a broad class of applications that require an understanding of the interplay among genotype, metabolism, and cellular behaviour, at scale.


Subject(s)
Genes, Essential/genetics , Models, Biological , Neoplasms , Computational Biology , Humans , Metabolic Flux Analysis , Neoplasms/genetics , Neoplasms/metabolism , Transcriptome/genetics
8.
PeerJ ; 6: e6046, 2018.
Article in English | MEDLINE | ID: mdl-30588397

ABSTRACT

BACKGROUND: Rhamnolipids, biosurfactants with a wide range of biomedical applications, are amphiphilic molecules produced on the surfaces of or excreted extracellularly by bacteria including Pseudomonas aeruginosa. However, Pseudomonas putida is a non-pathogenic model organism with greater metabolic versatility and potential for industrial applications. METHODS: We investigate in silico the metabolic capabilities of P. putida for rhamnolipids biosynthesis using statistical, metabolic and synthetic engineering approaches after introducing key genes (RhlA and RhlB) from P. aeruginosa into a genome-scale model of P. putida. This pipeline combines machine learning methods with multi-omic modelling, and drives the engineered P. putida model toward an optimal production and export of rhamnolipids out of the membrane. RESULTS: We identify a substantial increase in synthesis of rhamnolipids by the engineered model compared to the control model. We apply statistical and machine learning techniques on the metabolic reaction rates to identify distinct features on the structure of the variables and individual components driving the variation of growth and rhamnolipids production. We finally provide a computational framework for integrating multi-omics data and identifying latent pathways and genes for the production of rhamnolipids in P. putida. CONCLUSIONS: We anticipate that our results will provide a versatile methodology for integrating multi-omics data for topological and functional analysis of P. putida toward maximization of biosurfactant production.

9.
BMC Bioinformatics ; 19(Suppl 15): 442, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30497359

ABSTRACT

BACKGROUND: The study of cell metabolism is becoming central in several fields such as biotechnology, evolution/adaptation and human disease investigations. Here we present CiliateGEM, the first metabolic network reconstruction draft of the freshwater ciliate Tetrahymena thermophila. We also provide the tools and resources to simulate different growth conditions and to predict metabolic variations. CiliateGEM can be extended to other ciliates in order to set up a meta-model, i.e. a metabolic network reconstruction valid for all ciliates. Ciliates are complex unicellular eukaryotes of presumably monophyletic origin, with a phylogenetic position that is equal from plants and animals. These cells represent a new concept of unicellular system with a high degree of species, population biodiversity and cell complexity. Ciliates perform in a single cell all the functions of a pluricellular organism, including locomotion, feeding, digestion, and sexual processes. RESULTS: After generating the model, we performed an in-silico simulation with the presence and absence of glucose. The lack of this nutrient caused a 32.1% reduction rate in biomass synthesis. Despite the glucose starvation, the growth did not stop due to the use of alternative carbon sources such as amino acids. CONCLUSIONS: The future models obtained from CiliateGEM may represent a new approach to describe the metabolism of ciliates. This tool will be a useful resource for the ciliate research community in order to extend these species as model organisms in different research fields. An improved understanding of ciliate metabolism could be relevant to elucidate the basis of biological phenomena like genotype-phenotype relationships, population genetics, and cilia-related disease mechanisms.


Subject(s)
Research Design , Software , Tetrahymena thermophila/metabolism , Animals , Biomass , Phylogeny , Tetrahymena thermophila/growth & development
10.
Front Genet ; 9: 206, 2018.
Article in English | MEDLINE | ID: mdl-29963073

ABSTRACT

Breast cancer is one of the most common invasive tumors causing high mortality among women. It is characterized by high heterogeneity regarding its biological and clinical characteristics. Several high-throughput assays have been used to collect genome-wide information for many patients in large collaborative studies. This knowledge has improved our understanding of its biology and led to new methods of diagnosing and treating the disease. In particular, system biology has become a valid approach to obtain better insights into breast cancer biological mechanisms. A crucial component of current research lies in identifying novel biomarkers that can be predictive for breast cancer patient prognosis on the basis of the molecular signature of the tumor sample. However, the high dimension and low sample size of data greatly increase the difficulty of cancer survival analysis demanding for the development of ad-hoc statistical methods. In this work, we propose novel screening-network methods that predict patient survival outcome by screening key survival-related genes and we assess the capability of the proposed approaches using METABRIC dataset. In particular, we first identify a subset of genes by using variable screening techniques on gene expression data. Then, we perform Cox regression analysis by incorporating network information associated with the selected subset of genes. The novelty of this work consists in the improved prediction of survival responses due to the different types of screenings (i.e., a biomedical-driven, data-driven and a combination of the two) before building the network-penalized model. Indeed, the combination of the two screening approaches allows us to use the available biological knowledge on breast cancer and complement it with additional information emerging from the data used for the analysis. Moreover, we also illustrate how to extend the proposed approaches to integrate an additional omic layer, such as copy number aberrations, and we show that such strategies can further improve our prediction capabilities. In conclusion, our approaches allow to discriminate patients in high-and low-risk groups using few potential biomarkers and therefore, can help clinicians to provide more precise prognoses and to facilitate the subsequent clinical management of patients at risk of disease.

11.
Front Physiol ; 7: 208, 2016.
Article in English | MEDLINE | ID: mdl-27378931

ABSTRACT

International initiatives such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) are collecting multiple datasets at different genome-scales with the aim of identifying novel cancer biomarkers and predicting survival of patients. To analyze such data, several statistical methods have been applied, among them Cox regression models. Although these models provide a good statistical framework to analyze omic data, there is still a lack of studies that illustrate advantages and drawbacks in integrating biological information and selecting groups of biomarkers. In fact, classical Cox regression algorithms focus on the selection of a single biomarker, without taking into account the strong correlation between genes. Even though network-based Cox regression algorithms overcome such drawbacks, such network-based approaches are less widely used within the life science community. In this article, we aim to provide a clear methodological framework on the use of such approaches in order to turn cancer research results into clinical applications. Therefore, we first discuss the rationale and the practical usage of three recently proposed network-based Cox regression algorithms (i.e., Net-Cox, AdaLnet, and fastcox). Then, we show how to combine existing biological knowledge and available data with such algorithms to identify networks of cancer biomarkers and to estimate survival of patients. Finally, we describe in detail a new permutation-based approach to better validate the significance of the selection in terms of cancer gene signatures and pathway/networks identification. We illustrate the proposed methodology by means of both simulations and real case studies. Overall, the aim of our work is two-fold. Firstly, to show how network-based Cox regression models can be used to integrate biological knowledge (e.g., multi-omics data) for the analysis of survival data. Secondly, to provide a clear methodological and computational approach for investigating cancers regulatory networks.

12.
PLoS Comput Biol ; 11(5): e1004199, 2015 May.
Article in English | MEDLINE | ID: mdl-25978366

ABSTRACT

Ductal carcinoma is one of the most common cancers among women, and the main cause of death is the formation of metastases. The development of metastases is caused by cancer cells that migrate from the primary tumour site (the mammary duct) through the blood vessels and extravasating they initiate metastasis. Here, we propose a multi-compartment model which mimics the dynamics of tumoural cells in the mammary duct, in the circulatory system and in the bone. Through a branching process model, we describe the relation between the survival times and the four markers mainly involved in metastatic breast cancer (EPCAM, CD47, CD44 and MET). In particular, the model takes into account the gene expression profile of circulating tumour cells to predict personalised survival probability. We also include the administration of drugs as bisphosphonates, which reduce the formation of circulating tumour cells and their survival in the blood vessels, in order to analyse the dynamic changes induced by the therapy. We analyse the effects of circulating tumour cells on the progression of the disease providing a quantitative measure of the cell driver mutations needed for invading the bone tissue. Our model allows to design intervention scenarios that alter the patient-specific survival probability by modifying the populations of circulating tumour cells and it could be extended to other cancer metastasis dynamics.


Subject(s)
Breast Neoplasms/blood , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/blood , Carcinoma, Ductal, Breast/pathology , Models, Biological , Neoplastic Cells, Circulating/pathology , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Computer Simulation , Disease Progression , Female , Gene Expression Profiling , Humans , Kaplan-Meier Estimate , Survival Rate , Transforming Growth Factor beta/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...