Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 776982, 2021.
Article in English | MEDLINE | ID: mdl-35145529

ABSTRACT

Ambient temperatures are increasing due to climate change. Cereal crops development and production will be affected consequently. Flowering time is a key factor for adaptation of small grain cereals and, therefore, exploring developmental responses of barley to rising temperatures is required. In this work, we studied phasic growth, and inflorescence traits related to yield, in eight near isogenic lines of barley (Hordeum vulgare L.) differing at the VRN-H1, VRN-H2 and PPD-H1 genes, representing different growth habits. The lines were grown in contrasting vernalization treatments, under two temperature regimes (18 and 25°C), in long days. Lines with recessive ppd-H1 presented delayed development compared to lines with the sensitive PPD-H1 allele, across the two growth phases considered. High temperature delayed flowering in all unvernalized plants, and in vernalized spring barleys carrying the insensitive ppd-H1 allele, whilst it accelerated flowering in spring barleys with the sensitive PPD-H1 allele. This finding evidenced an interaction between PPD-H1, temperature and vernalization. At the high temperature, PPD-H1 lines in spring backgrounds (VRN-H1-7) yielded more, whereas lines with ppd-H1 were best in vrn-H1 background. Our study revealed new information that will support breeding high-yielding cultivars with specific combinations of major adaptation genes tailored to future climatic conditions.

2.
J Exp Bot ; 71(6): 1956-1968, 2020 03 25.
Article in English | MEDLINE | ID: mdl-31875911

ABSTRACT

Wheat adaptation can be fine-tuned by earliness per se (Eps) genes. Although the effects of Eps genes are often assumed to act independently of the environment, previous studies have shown that they exhibit temperature sensitivity. The number of leaves and phyllochron are considered determinants of flowering time and the numerical components of yield include spikelets per spike and fertile floret number within spikelets. We studied the dynamics of leaf, spikelet, and floret development in near isogenic lines with either late or early alleles of Eps-D1 under seven temperature regimes. Leaf appearance dynamics were modulated by temperature, and Eps alleles had a greater effect on the period from flag leaf to heading than phyllochron. In addition, the effects of the Eps alleles on spikelets per spike were minor, and more related to spikelet plastochron than the duration of the early reproductive phase. However, fertile floret number was affected by the interaction between Eps alleles and temperature. So, at 9 °C, Eps-early alleles had more fertile florets than Eps-late alleles, at intermediate temperatures there was no significant difference, and at 18 °C (the highest temperature) the effect was reversed, with lines carrying the late allele producing more fertile florets. These effects were mediated through changes in floret survival; there were no clear effects on the maximum number of floret primordia.


Subject(s)
Flowers , Triticum , Alleles , Plant Leaves , Temperature , Triticum/genetics
3.
Sci Rep ; 9(1): 2584, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30796296

ABSTRACT

Differences in time to heading that remain after photoperiod and vernalisation requirements have been saturated are classified as earliness per se (Eps) effects. It has been commonly assumed that Eps genes are purely constitutive and independent of environment, although the likely effect of temperature on Eps effects in hexaploid wheat has never been tested. We grew four near isogenic lines (NILs) for the Eps gene located in chromosome 1D (Eps-D1) at 6, 9, 12, 15, 18, 21 and 24 °C. In line with expectations we found that lines carrying the Eps-late allele were always later than those with Eps-early alleles. But in addition, we reported for the first time that the magnitude of the effect increased with decreasing temperature: an Eps x temperature interaction in hexaploid wheat. Variation in heading time due to Eps x temperature was associated with an increase in sensitivity to temperature mainly during late reproductive phase. Moreover, we showed that Eps alleles exhibited differences in cardinal (base, optimum, maximum) temperatures and that the expression of ELF3, (the likely candidate for Eps-D1) also interacted with temperature.


Subject(s)
Chromosomes, Plant/genetics , Flowers/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Temperature , Triticum , Alleles , Chromosome Mapping/methods , Photoperiod , Polyploidy , Triticum/genetics , Triticum/growth & development
4.
J Exp Bot ; 69(10): 2633-2645, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29562264

ABSTRACT

As wheat yield is linearly related to grain number, understanding the physiological determinants of the number of fertile florets based on floret development dynamics due to the role of the particular genes is relevant. The effects of photoperiod genes on dynamics of floret development are largely ignored. Field experiments were carried out to (i) characterize the dynamics of floret primordia initiation and degeneration and (ii) to determine which are the most critical traits of such dynamics in establishing genotypic differences in the number of fertile florets at anthesis in near isogenic lines (NILs) carrying photoperiod-insensitive alleles. Results varied in magnitude between the two growing seasons, but in general introgression of Ppd-1a alleles reduced the number of fertile florets. The actual effect was affected not only by the genome and the doses but also by the source of the alleles. Differences in the number of fertile florets were mainly explained by differences in the floret generation/degeneration dynamics, and in most cases associated with floret survival. Manipulating photoperiod insensitivity, unquestionably useful for changing flowering time, may reduce spike fertility but much less than proportionally to the change in duration of development, as the insensitivity alleles did increase the rate of floret development.


Subject(s)
Flowers/growth & development , Plant Leaves/growth & development , Plant Proteins/genetics , Triticum/physiology , Fertility , Flowers/genetics , Plant Leaves/genetics , Plant Proteins/metabolism , Triticum/genetics , Triticum/growth & development
5.
J Exp Bot ; 69(10): 2621-2631, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29562296

ABSTRACT

Wheat adaptation is affected by Ppd genes, but the role of these alleles in the rates of leaf and spikelet initiation has not been properly analysed. Twelve near isogenic lines (NILs) combining Ppd-1a alleles from different donors introgressed in A, B, and/or D genomes were tested under field conditions during two growing seasons together with the wild type, Paragon. Leaf initiation rate was unaffected by Ppd-1a alleles so the final leaf number (FLN) was reduced in parallel with reductions in the duration of the vegetative phase. Spikelet primordia initiation was accelerated and consequently the effect on spikelets per spike was less than proportional to the effect on the duration of spikelet initiation. The magnitude of these effects on spikelet plastochron depended on the doses of Ppd-1 homoeoalleles and the specific insensitivity alleles carried. Double ridge was consistently later than floral initiation, but the difference between them was not affected by Ppd-1a alleles. These findings have potential for selecting the best combinations from the Ppd-1 homoeoallelic series for manipulating adaptation taking into consideration particular effects on spikelet number.


Subject(s)
Flowers/growth & development , Plant Leaves/growth & development , Plant Proteins/genetics , Triticum/genetics , Flowers/genetics , Plant Leaves/genetics , Plant Proteins/metabolism , Triticum/growth & development , Triticum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...