Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Assay Drug Dev Technol ; 10(6): 525-32, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22574652

ABSTRACT

Cardiovascular toxicity is a leading contributor to drug withdrawal and late-stage attrition. Earlier and broader screening is a validated approach to build-in cardiovascular safety as demonstrated with human Ether-à-go-go-related gene (hERG) screening to reduce drug-induced arrhythmia. There is an urgent need for novel in vitro assays to address other mechanistic aspects of cardiovascular function, including contractility, heart rate, toxicity, hypertrophy, and non-hERG arrhythmia. Recent advances in label-free cellular impedance technology now enable tracking of spontaneous, synchronized beating of cultured cardiomyocytes. Analysis of beating allows integrated detection that is downstream of electrical and mechanical aspects of contraction. Here, we evaluate impedance-based cardiomyocyte responses against criteria required for drug screening. The throughput and sensitivity allowed for rapid assay development. Critical variables for rat neonatal cardiomyocyte assays included cell density and serum levels. Once optimized, consistent, stable beating for at least 3 days was straight-forward to achieve. In tests of compounds spanning a breadth of target classes, the potency values showed excellent precision, wide dynamic range, and consistency across multiple experiments. Cardiomyocyte impedance assays can extract multiple beat-related parameters. In these experiments, rate, amplitude, and rise slope were examined and each yielded acceptable precision. Potency values calculated by beat rate and amplitude were highly correlated for most compounds although selected compounds displayed unique profiles indicative of different mechanisms. Tests with known cardiovascular active drugs revealed concordance with clinical findings. Thus, impedance assays combine novel features including sensitivity to contractile activity, versatile data analysis, and robust/translatable data in a format with sufficient throughput to become a valuable addition to the cardiovascular in vitro screening arsenal.


Subject(s)
Drug Evaluation, Preclinical/methods , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Animals , Animals, Newborn , Biological Assay/methods , Cardiovascular Agents/pharmacology , Cells, Cultured , Culture Media , Data Interpretation, Statistical , Dimethyl Sulfoxide/pharmacology , Electric Impedance , Ether-A-Go-Go Potassium Channels/genetics , Heart Rate/drug effects , Myocardial Contraction/drug effects , Patch-Clamp Techniques , Rats , Rats, Wistar , Structure-Activity Relationship
2.
Biochem Pharmacol ; 66(5): 785-90, 2003 Sep 01.
Article in English | MEDLINE | ID: mdl-12948859

ABSTRACT

The objective of the current study was to facilitate functional calcium assays, compatible with the fluorometric imaging plate reader platform, for the human metabotropic glutamate receptor (mGluR) subtypes 2 and 4, by co-expressing each receptor with a G-protein chimera comprising Galphaq with the C-terminal five amino acids replaced with those from Galphai3 (GqGi3). Transfection of GqGi3 into previously validated stable CHO cell lines expressing mGluR2 or mGluR4 allowed for the selection of new double transfectants in which application of L-glutamate and other mGluR agonists resulted in calcium coupling with a high signal:noise ratio (maximal changes in relative fluorescence units up to 20,000). The rank order of agonist potency for the stimulation of calcium mobilization in the mGluR2/GqGi3 stable cell line was LY354740>L-CCG-I=DCG-IV>L-glutamate>/=(2R,4R)-APDC>/=(1S,3R)-ACPD. In the mGluR4/GqGi3 stable cell line the rank order of agonist potency was L-AP4>L-SOP>/=ACPT-I=L-CCG-I>/=L-glutamate=(R,S)-PPG. By comparison, equivalent potency orders and a significant correlation in functional activities were observed when the same compounds were profiled in [35S]GTPgammaS binding assays for each mGluR subtype. These results validate the use of functional calcium assays, amenable to high-throughput applications on the fluorometric imaging plate reader, for the mGluR2 and mGluR4 subtypes when co-expressed in stable cell lines with the GqGi3 chimera.


Subject(s)
Calcium/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go , GTP-Binding Proteins/metabolism , Receptors, Metabotropic Glutamate/metabolism , Animals , Bridged Bicyclo Compounds/pharmacology , CHO Cells , Cricetinae , Excitatory Amino Acid Agonists/pharmacology , Female , GTP-Binding Protein alpha Subunits, Gq-G11 , GTP-Binding Proteins/genetics , Guanosine 5'-O-(3-Thiotriphosphate)/metabolism , Heterotrimeric GTP-Binding Proteins/genetics , Heterotrimeric GTP-Binding Proteins/metabolism , Humans , Receptors, Metabotropic Glutamate/agonists , Recombinant Fusion Proteins/metabolism , Sulfur Radioisotopes
3.
Eur J Pharmacol ; 472(1-2): 33-8, 2003 Jul 04.
Article in English | MEDLINE | ID: mdl-12860470

ABSTRACT

We examined the feasibility of coupling the 5-HT(6) receptor to a Ca(2+) signaling read-out using a chimeric G-protein, comprising of G(alphaq) with the C-terminal five amino acids from G(alphas), to facilitate assays on the fluorometric imaging plate reader (FLIPR). Using a transient transfection assay in human embryonic kidney (HEK) cells, Ca(2+) signaling in response to serotonin (5-HT) was facilitated by co-transfection of the 5-HT(6) receptor with the G(alphaq)/G(alphas) chimera, but not with the 5-HT(6) receptor alone or with a similar chimera incorporating the C-terminal five amino acids of G(alphai3). A series of agonist concentration-response curves were constructed using the 5-HT(6)-G(alphaq)/G(alphas) signaling assay generating the following rank order of agonist potency; 5-methoxytryptamine (EC(50), 9 nM)=5-HT (12 nM)=2-methyl 5-HT (13 nM)>tryptamine (86 nM)=5-carboxamidotryptamine (5-CT) (119 nM)>>lisuride (>1 microM). In comparison, essentially identical EC(50) values were observed for the stimulation of cAMP accumulation with the same compounds; 5-methoxytryptamine (EC(50), 6 nM)=5-HT (6 nM)=2-methyl 5-HT (15 nM)>tryptamine (91 nM)=5-CT (153 nM)>lisuride (>350 nM). Clozapine and SB 271046 both produced a concentration-dependent antagonism of the 5-HT-stimulated Ca(2+) response with IC(50) values of 45 and 11 nM, respectively. In contrast, aripiprazole, a recently launched atypical anti-psychotic with a novel mechanism of action described as a dopamine/serotonin stabilizer, was essentially devoid of 5-HT(6) receptor antagonist activity. Our results demonstrate that a FLIPR-based Ca(2+) signaling assay is a feasible approach to the functional characterization of 5-HT(6) receptor ligands. Moreover, the equivalent coupling efficiency, as indexed by agonist potency, observed using this system compared with the native coupling assay to cAMP suggests that the C-terminal five amino acids of G(alphas) are the major determinant for the receptor/G-protein interaction of the 5-HT(6) receptor subtype.


Subject(s)
Calcium Signaling , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Receptors, Serotonin/metabolism , Recombinant Fusion Proteins/metabolism , Calcium/metabolism , Calcium Signaling/drug effects , Cell Line , Humans , Receptors, Serotonin/genetics , Serotonin Antagonists/pharmacology , Serotonin Receptor Agonists/pharmacology , Transfection
4.
Biochem Biophys Res Commun ; 294(3): 655-9, 2002 Jun 14.
Article in English | MEDLINE | ID: mdl-12056819

ABSTRACT

Using a universal signaling assay employing G-protein chimeras comprising the C-terminal five amino acids of Gi1/2, Gi3, Go, and Gz fused to Gq, the calcium mobilizing G-protein, we explored the role of the C-terminus of Gi family G-proteins as a determinant for 5-HT(1A) receptor functional coupling. Co-expression of the 5-HT(1A) receptor with each of the Gq/Gi family chimeras resulted in a concentration-dependent increase in calcium upon addition of 5-HT, although the coupling efficiency differed dramatically. Gq/Gi3 resulted in the most efficient coupling based on both potency and relative maximum response to 5-HT. Gq/Go also produced efficient coupling in terms of relative 5-HT efficacy (76% of the Gq/Gi3 maximum response), although 5-HT exhibited 4-fold lower agonist potency, and Gq/Gz and Gq/Gi1/2 conferred poor functional coupling. Agonist potencies and relative efficacies determined for a number of 5-HT(1A) receptor agonists using Gq/Gi3 coupling were significantly weaker than those described previously for coupling through the native G-protein. These results indicate the C-terminus of Gi3 as an important determinant for coupling to the 5-HT(1A) receptor, while the reduced functional agonist activities suggest additional motifs participate in receptor/G-protein coupling.


Subject(s)
Calcium Signaling , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , Receptors, Serotonin/metabolism , Calcium/metabolism , Humans , Receptors, Serotonin, 5-HT1 , Recombinant Fusion Proteins/metabolism , Transfection , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...