Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Gerontol A Biol Sci Med Sci ; 78(10): 1785-1792, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37205871

ABSTRACT

Aging is believed to induce insulin resistance in humans. However, when and how insulin sensitivity changes with aging remains unclear in both humans and mice. In this study, groups of male C57BL/6N mice at 9-19 weeks (young), 34-67 weeks (mature adult), 84-85 weeks (presenile), and 107-121 weeks of age underwent hyperinsulinemic-euglycemic clamp studies with somatostatin infusion under awake and nonrestrained conditions. The glucose infusion rates for maintaining euglycemia were 18.4 ± 2.9, 5.9 ± 1.3, 20.3 ± 7.2, and 25.3 ± 4.4 mg/kg/min in young, mature adult, presenile, and aged mice, respectively. Thus, compared with young mice, mature adult mice exhibited the expected insulin resistance. In contrast, presenile and aged mice showed significantly higher insulin sensitivity than mature adult mice. These age-related changes were mainly observed in glucose uptake into adipose tissue and skeletal muscle (rates of glucose disappearance were 24.3 ± 2.0, 17.1 ± 1.0, 25.5 ± 5.2, and 31.8 ± 2.9 mg/kg/min in young, mature adult, presenile, and aged mice, respectively). Epididymal fat weight and hepatic triglyceride levels were higher in mature adult mice than those in young and aged mice. Our observations indicate that, in male C57BL/6N mice, insulin resistance appears at the mature adult stage of life but subsequently improves markedly. These alterations in insulin sensitivity are attributable to changes in visceral fat accumulations and age-related factors.

2.
Article in English | MEDLINE | ID: mdl-33879516

ABSTRACT

INTRODUCTION: Sodium glucose cotransporter-2 (SGLT2) inhibitors are widely used for diabetes treatment. Although SGLT2 inhibitors have been clinically observed to increase food intake, roles or even the presence of SGLT2 in the central nervous system (CNS) has not been established. We aimed to elucidate potential functions of SGLT2 in the CNS, and the effects of CNS-targeted SGLT2 inhibitors on food intake. RESEARCH DESIGN AND METHODS: We administered three kinds of SGLT2 inhibitors, tofogliflozin, dapagliflozin, and empagliflozin, into the lateral ventricle (LV) in rats and evaluated their effects on food intake. We also evaluated the effects of tofogliflozin administration in the third (3V) and fourth ventricle (4V). Intraperitoneal administration of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist known to suppress food intake, was combined with central tofogliflozin to elucidate whether GLP-1 signaling antagonizes the effect of central SGLT2 inhibitors on food intake. To elucidate potential molecular mechanisms mediating changes in feeding, hypothalamic areas associated with food intake regulation were harvested and analyzed after intracerebroventricular administration (ICV) of tofogliflozin. RESULTS: Bolus ICV injection of tofogliflozin induced a robust increase in food intake starting at 1.5 hours postinjection, and lasting for 5 days. No effect was observed when the same dose of tofogliflozin was administered intraperitoneally. ICV dapagliflozin and empagliflozin significantly enhanced food intake, although the strength of these effects varied among drugs. Food intake was most markedly enhanced when tofogliflozin was infused into the LV. Fewer or no effects were observed with infusion into the 3V or 4V, respectively. Systemic administration of liraglutide suppressed the effect of ICV tofogliflozin on food intake. ICV tofogliflozin increased phosphorylation of AMPK and c-fos expression in the lateral hypothalamus. CONCLUSIONS: SGLT2 inhibitors in the CNS increase food intake. SGLT2 activity in the CNS may regulate food intake through AMPK phosphorylation in the lateral hypothalamic area.


Subject(s)
AMP-Activated Protein Kinases , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Adenosine Monophosphate , Animals , Benzhydryl Compounds , Eating , Glucose , Glucosides , Hypothalamic Area, Lateral , Phosphorylation , Rats , Sodium , Sodium-Glucose Transporter 2 , Sodium-Glucose Transporter 2 Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...