Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Cell Physiol ; 303(7): C757-66, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22814400

ABSTRACT

Platelets play a critical role in the pathophysiology of reperfusion, sepsis, and cardiovascular diseases. In a multiple step process, they adhere to activated endothelium and release proinflammatory cytokines thereby promoting the inflammatory process. Glycoprotein VI (GPVI) is the major collagen receptor on the platelet surface and triggers platelet activation and primary hemostasis. Activation of GPVI leads to stable platelet adhesion and degranulation of platelet granules. However, GPVI is critically involved in platelet adhesion to activated endothelium without exposure of subendothelial matrix. Earlier studies show that the soluble GPVI-Fc binds to collagen and protects mice from atherosclerosis and decreases neointima proliferation after arterial injury. Here, we show for the first time that recombinant GPVI-Fc binds to activated endothelium mainly via vitronectin and prevents platelet/endothelial interaction. Administration of GPVI-Fc reduced infarct size and preserved cardiac function in a mouse model of myocardial infarction. This process was associated with reduced GPVI-induced platelet degranulation and release of proinflammatory cytokines in vitro and in vivo. Taken together, administration of GPVI-Fc offers a novel strategy to control platelet-mediated inflammation and to preserve myocardial function following myocardial infarction.


Subject(s)
Endothelium, Vascular/metabolism , Heart/physiology , Immunoglobulin Fc Fragments/metabolism , Ischemic Attack, Transient/metabolism , Platelet Adhesiveness/physiology , Platelet Membrane Glycoproteins/metabolism , Animals , CHO Cells , Cattle , Cricetinae , Cricetulus , Endothelium, Vascular/pathology , Human Umbilical Vein Endothelial Cells , Humans , Ischemic Attack, Transient/pathology , Male , Mice , Mice, Inbred C57BL , Protein Multimerization/physiology
2.
J Mol Cell Cardiol ; 53(1): 6-14, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22446162

ABSTRACT

Extracellular cyclophilin A (CyPA) and its receptor Extracellular Matrix Metalloproteinase Inducer (EMMPRIN, CD147) modulate inflammatory processes beyond metalloproteinase (MMP) activity. Recently, we have shown that CyPA and CD147 are upregulated in patients with inflammatory cardiomyopathy. Here we investigate the role of CyPA and CD147 in murine coxsackievirus B3 (CVB3)-induced myocarditis. CVB3-infected CyPA(-/-) mice (129S6/SvEv) revealed a significantly reduced T-cell and macrophage recruitment at 8 days p.i. compared to wild-type mice. In A.BY/SnJ mice, treatment with the cyclophilin-inhibitor NIM811 was associated with a reduction of inflammatory lesions and MMP-9 expression but with enhanced virus replication 8 days p.i. At 28 days p.i. the extent of lesion areas was not affected bei NIM811, whereas the collagen content was reduced. Initiation of NIM811-treatment on day 12 (after an effective virus defense) resulted in an even more pronounced reduction of myocardial fibrosis. In conclusion, in CVB3-induced myocarditis CyPA is important for macrophage and T cell recruitment and effective virus defense and may represent a pharmacological target to modulate myocardial remodeling in myocarditis.


Subject(s)
Coxsackievirus Infections/immunology , Cyclophilin A/metabolism , Endomyocardial Fibrosis/immunology , Enterovirus B, Human/immunology , Myocarditis/immunology , Animals , Basigin/metabolism , Cell Line , Cyclophilin A/antagonists & inhibitors , Cyclophilin A/deficiency , Cyclosporine/pharmacology , Endomyocardial Fibrosis/etiology , Endomyocardial Fibrosis/pathology , Humans , Macrophages/drug effects , Macrophages/immunology , Matrix Metalloproteinase 9/metabolism , Mice , Mice, 129 Strain , Mice, Knockout , Monocytes/drug effects , Monocytes/immunology , Myocarditis/complications , Myocarditis/virology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Ventricular Remodeling/drug effects
3.
Circulation ; 125(5): 685-96, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22223428

ABSTRACT

BACKGROUND: CXCR4-positive bone marrow cells (BMCs) are critically involved in cardiac repair mechanisms contributing to preserved cardiac function. Stromal cell-derived factor-1 (SDF-1) is the most prominent BMC homing factor known to augment BMC engraftment, which is a limiting step of stem cell-based therapy. After myocardial infarction, SDF-1 expression is rapidly upregulated and promotes myocardial repair. METHODS AND RESULTS: We have established a bifunctional protein consisting of an SDF-1 domain and a glycoprotein VI (GPVI) domain with high binding affinity to the SDF-1 receptor CXCR4 and extracellular matrix proteins that become exposed after tissue injury. SDF1-GPVI triggers chemotaxis of CXCR4-positive cells, preserves cell survival, enhances endothelial differentiation of BMCs in vitro, and reveals proangiogenic effects in ovo. In a mouse model of myocardial infarction, administration of the bifunctional protein leads to enhanced recruitment of BMCs, increases capillary density, reduces infarct size, and preserves cardiac function. CONCLUSIONS: These results indicate that administration of SDF1-GPVI may be a promising strategy to treat myocardial infarction to promote myocardial repair and to preserve cardiac function.


Subject(s)
Cell- and Tissue-Based Therapy , Chemokine CXCL12/pharmacology , Heart/drug effects , Heart/physiopathology , Ischemic Attack, Transient/therapy , Myocardial Infarction/therapy , Platelet Membrane Glycoproteins/pharmacology , Recombinant Fusion Proteins/pharmacology , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/drug effects , Cell Differentiation/drug effects , Cell Survival/drug effects , Chemokine CXCL12/metabolism , Chemokine CXCL12/therapeutic use , Collagen/metabolism , Ischemic Attack, Transient/pathology , Ischemic Attack, Transient/physiopathology , Mice , Mice, Inbred C57BL , Models, Animal , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Neovascularization, Physiologic/drug effects , Platelet Membrane Glycoproteins/metabolism , Platelet Membrane Glycoproteins/therapeutic use , Protein Binding , Receptors, CXCR4/metabolism , Treatment Outcome
4.
Cell Physiol Biochem ; 28(1): 1-12, 2011.
Article in English | MEDLINE | ID: mdl-21865843

ABSTRACT

Myocardial ischemia und subsequent reperfusion is followed by a complex sequence of pathophysiological responses involving inflammatory cell infiltration and cytokine release as well as postinfarction wound healing and myocardial tissue remodeling. With the development of gene targeted mice the contribution of individual gene products to the pathophysiology of myocardial ischemia and reperfusion can be defined leading to an increasing interest in the widely-used mouse model of myocardial infarction. This methological paper describes in detail the required equipment, surgical instruments, drugs and additional material, the methods of anesthesia and analgesia, the procedures involved in preparation of the animal, tracheotomy, intubation, thoracotomy, occlusion of the left descending artery, removal of the heart, determination of infarct size, analysis of cardiac functional parameters with echocardiography and magnetic resonance imaging (MRI) as well as determination of the morphological consequences utilizing gelatin zymography, histology and immunohistochemistry.


Subject(s)
Myocardial Infarction/pathology , Animals , Collagenases/metabolism , Disease Models, Animal , Echocardiography , Magnetic Resonance Imaging , Mice , Myocardial Infarction/mortality , Myocardial Infarction/surgery
5.
Arterioscler Thromb Vasc Biol ; 31(6): 1377-86, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21441138

ABSTRACT

OBJECTIVE: Inflammation and proteolysis crucially contribute to myocardial ischemia and reperfusion injury. The extracellular matrix metalloproteinase inducer EMMPRIN (CD147) and its ligand cyclophilin A (CyPA) may be involved in both processes. The aim of the study was to characterize the role of the CD147 and CyPA interplay in myocardial ischemia/reperfusion (I/R) injury. METHODS AND RESULTS: Immunohistochemistry showed enhanced expression of CD147 and CyPA in myocardial sections from human autopsies of patients who had died from acute myocardial infarction and from mice at 24 hours after I/R. At 24 hours and 7 days after I/R, the infarct size was reduced in CD147(+/-) mice vs CD147(+/+) mice (C57Bl/6), in mice (C57Bl/6) treated with monoclonal antibody anti-CD147 vs control monoclonal antibody, and in CyPA(-/-) mice vs CyPA(+/+) mice (129S6/SvEv), all of which are associated with reduced monocyte and neutrophil recruitment at 24 hours and with a preserved systolic function at 7 days. The combination of CyPA(-/-) mice with anti-CD147 treatment did not yield further protection compared with either inhibition strategy alone. In vitro, treatment with CyPA induced monocyte chemotaxis in a CD147- and phosphatidylinositol 3-kinase-dependent manner and induced monocyte rolling and adhesion to endothelium (human umbilical vein endothelial cells) under flow in a CD147-dependent manner. CONCLUSION: CD147 and its ligand CyPA are inflammatory mediators after myocardial ischemia and reperfusion and represent potential targets to prevent myocardial I/R injury.


Subject(s)
Basigin/physiology , Cyclophilin A/physiology , Myocardial Infarction/metabolism , Myocardial Ischemia/physiopathology , Myocardial Reperfusion Injury/etiology , Systole , Animals , Basigin/analysis , Cell Adhesion , Cell Movement , Cyclophilin A/analysis , Humans , Macrophages/physiology , Mice , Mice, Inbred C57BL , Myocardial Reperfusion Injury/prevention & control , Neutrophils/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...