Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 9(1)2018 Dec 26.
Article in English | MEDLINE | ID: mdl-30587770

ABSTRACT

With the goal of accurately detecting and quantifying the amounts of dopamine (DA) and serotonin (5-HT) in mixtures of these neurotransmitters without using any labelling, we present a detailed, comparative computational and Raman experimental study. Although discrimination between these two analytes is achievable in such mixtures for concentrations in the millimolar range, their accurate quantification remains unattainable. As shown for the first time in this work, the formation of a new composite resulting from their interactions with each other is the main reason for this lack of quantification. While this new hydrogen-bonded complex further complicates potential analyte discrimination and quantification at concentrations characteristic of physiological levels (i.e., nanomolar concentrations), it can also open new avenues for its use in drug delivery and pharmaceutical research. This remark is based not only on chemical interactions analyzed here from both theoretical and experimental approaches, but also on biological relationship, with consideration of both functional and neural proximity perspectives. Thus, this research constitutes an important contribution toward better understanding of neural processes, as well as toward possible future development of label-free biosensors.


Subject(s)
Biosensing Techniques , Dopamine/analysis , Neurotransmitter Agents/analysis , Serotonin/analysis , Density Functional Theory , Humans , Spectrum Analysis, Raman
2.
Sensors (Basel) ; 18(8)2018 Aug 16.
Article in English | MEDLINE | ID: mdl-30115871

ABSTRACT

To better understand detection and monitoring of the important neurotransmitter adenosine at physiological levels, this study combines quantum chemical density functional modeling and ultrasensitive surface-enhanced Raman spectroscopic (SERS) measurements. Combined simulation results and experimental data for an analyte concentration of about 10-11 molar indicate the presence of all known molecular forms resulting from adenosine's complex redox-reaction. Detailed analysis presented here, besides assessing potential Raman signatures of these adenosinic forms, also sheds light on the analytic redox process and voltammetric detection. Examples of adenosine Raman fingerprints for different molecular orientations with respect to the SERS substrate are the vibrational line around 920 ± 10 cm-1 for analyte physisorption through the carbinol moiety and around 1600 ± 20 cm-1 for its fully oxidized form. However, both hydroxyl/oxygen sites and NH2/nitrogen sites contribute to molecule's interaction with the SERS environment. Our results also reveal that contributions of partially oxidized adenosine forms and of the standard form are more likely to be detected with the first recorded voltammetric oxidation peak. The fully oxidized adenosine form contributes mostly to the second peak. Thus, this comparative theoretical⁻experimental investigation of adenosine's vibrational signatures provides significant insights for advancing its detection, and for future development of opto-voltammetric biosensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...