Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(10): 4646-4656, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38426220

ABSTRACT

Downshifters refer to compounds with the capacity to absorb UV photons and transform them into visible light. The integration of such downshifters has the potential to improve the efficiency of commercial photovoltaic modules. Initially, costly lanthanide derivatives and organic fluorescent dyes were introduced, resulting in a heightened module efficiency. In a novel research direction guided by the same physicochemical principles, the utilization of copper(I) coordination compounds is proposed. This choice is motivated by its simpler and more economical synthesis, primarily due to copper being a more abundant and less toxic element. Our proposal involves employing 1,2-bis(4-pyridyl) ethane (bpe), an economically viable commercial ligand, in conjunction with CuI to synthesize coordination polymers: [CuI(bpe)]n(1), [Cu3I3(bpe)3]n(2), and [CuI(bpe)0.5]n(3). These polymers exhibit the ability to absorb UV photons and emit light within the green and orange spectra. To conduct external quantum efficiency studies, the compounds are dispersed on glass and then encapsulated with ethylene vinyl acetate through heating to 150 °C. Interestingly, during these procedural steps, the solvents and temperatures employed induce a phase transformation, which has been thoroughly examined through both experimental analysis and theoretical calculations. The outcomes of these studies reveal an enhancement in external quantum efficiency with [Cu3I3(bpe)3]n(2), at a cost significantly lower (between 340 and 350 times) than that associated with lanthanide DS complexes.

2.
Polymers (Basel) ; 15(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37447473

ABSTRACT

This paper describes the synthesis and characterization of seven different copper(II) coordination compounds, as well as the formation of a protonated ligand involving all compounds from the same reaction. Their synthesis required hydrothermal conditions, causing the partial in situ transformation of 5-fluoro uracil-1-acetic acid (5-FUA) into an oxalate ion (ox), as well as the protonation of the 4,4'-bipyridine (bipy) ligand through a catalytic process resulting from the presence of Cu(II) within the reaction. These initial conditions allowed obtaining the new coordination compounds [Cu2(5-FUA)2(ox)(bipy)]n·2n H2O (CP2), [Cu(5-FUA)2(H2O)(bipy)]n·2n H2O (CP3), as well as the ionic pair [(H2bipy)+2 2NO3-] (1). The mother liquor evolved rapidly at room temperature and atmospheric pressure, due to the change in concentration of the initial reagents and the presence of the new chemical species generated in the reaction process, yielding CPs [Cu(5-FUA)2(bipy)]n·3.5n H2O, [Cu3(ox)3(bipy)4]n and [Cu(ox)(bipy)]n. The molecular compound [Cu(5-FUA)2(H2O)4]·4H2O (more thermodynamically stable) ended up in the mother liquor after filtration at longer reaction times at 25 °C and 1 atm., cohabiting in the medium with the other crystalline solids in different proportions. In addition, the evaporation of H2O caused the single-crystal to single-crystal transformation (SCSC) of [Cu(5-FUA)2(H2O)(bipy)]n·2n H2O (CP3) into [Cu(5-FUA)2(bipy)]n·2n H2O (CP4). A theoretical study was performed to analyze the thermodynamic stability of the phases. The observed SCSC transformation also involved a perceptible color change, highlighting this compound as a possible water sensor.

3.
Inorg Chem ; 62(28): 10928-10939, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37390357

ABSTRACT

This work presents two isostructural Cu(I)-I 2-fluoropyrazine (Fpyz) luminescent and semiconducting 2D coordination polymers (CPs). Hydrothermal synthesis allows the growth of P-1 space group single crystals, whereas solvent-free synthesis produces polycrystals. Via recrystallization in acetonitrile, P21 space group single crystals are obtained. Both show a reversible luminescent response to temperature and pressure. Structure determination by single-crystal X-ray diffraction at 200 and 100 K allows us to understand their response as a function of temperature. Applying hydrostatic/uniaxial pressure or grinding also generates significant variations in their emission. The high structural flexibility of the Cu(I)-I chain is significantly linked to the corresponding alterations in structure. Remarkably, pressure can increase the conductivity by up to 3 orders of magnitude. Variations in resistivity are consistent with changes in the band gap energy. The experimental results are in agreement with the DFT calculations. These properties may allow the use of these CPs as optical pressure or temperature sensors. In addition, their behavior as a heterogeneous photocatalyst of persistent organic dyes has also been investigated.

4.
Polymers (Basel) ; 15(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36850172

ABSTRACT

Two Zn(II) coordination polymers (CPs) based on n-methylpyridyltriazole carboxylate semi-rigid organic ligands (n-MPTC), with n = 3 (L1) and 4 (L2), have been prepared at the water n-butanol interphase by reacting Zn(NO3)2·4H2O with NaL1 and NaL2. This allows us to systematically investigate the influence of the isomeric positional effect on their structures. The organic ligands were obtained by saponification from their respective ester precursors ethyl-5-methyl-1-(pyridin-3-ylmethyl)-1H-1,2,3-triazole-4-carboxylate (P1) and ethyl-5-methyl-1-(pyridin-4-ylmethyl)-1H-1,2,3-triazole-4-carboxylate (P2), resulting in their corresponding sodium salt forms, 3-MPTC, and 4-MPTC. The structure of the Zn(II) CPs determined by single-crystal X-ray diffraction reveals that both CPs have 2D supramolecular hydrogen bond networks. The 2D supramolecular network of [Zn(L1)]n (1) is built up by hydrogen bond interactions between oxygen and hydrogen atoms between neighboring n-methylpyridyltriazole molecules, whereas in [Zn(L2)·4H2O]n (2) the water molecules link 1D polymeric chains forming a 2D supramolecular aggregate. The structures of 1 and 2 clearly show that the isomeric effect in the semi-rigid ligands plays a vital role in constructing the Zn(II) coordination polymers, helped by the presence of the methylene spacer group, in the final structural conformation. The structures of 1 and 2 significantly affect their luminescent properties. Thus, while 2 shows strong emission at room temperature centered at 367 nm, the emission of 1 is quenched substantially.

5.
Bioinorg Chem Appl ; 2022: 8788221, 2022.
Article in English | MEDLINE | ID: mdl-35449715

ABSTRACT

This research raises the potential use of coordination polymers as new useful materials in two essential research fields, allowing the obtaining of a new multiartificial enzyme with the capacity to inhibit the growth of bacteria resistance. The fine selection of the ligands allows the design of a new 2D coordination polymer (CP), with the formula [Cu2(IBA)2(OH2)4]n·6nH2O, by the combination of Cu (II) as the metal center with a pseudoamino acid (H2IBA = isophthaloyl bis ß-alanine). Quantitative total X-ray fluorescence (TXRF) analyses show that the obtained CP can gradually release Cu (II) ions. Additionally, this CP can be nanoprocessed and transformed into a metal-organic gel (MOG) by using different Cu (II) salt concentrations and the application of ultrasounds. Considering its nanometric dimensions, the slow Cu (II) release and its simple processability, its performance as an artificial enzyme, and its antibacterial ability were explored. The results obtained show the first nanocoordination polymer acting as an artificial multienzyme (peroxidase, catalase, and superoxodismutase) exhibiting antibacterial activity in the presence of hydrogen peroxide, with selective behavior for three bacterium strains (S. spiritovirum, A. faecales, and B. cereus). Indeed, this CP shows a more robust inhibition capacity for Sphingobacterium. Going beyond that, as there are no comfortable and practically clinical tests capable of detecting the presence of Sphingobacteria, the compound can be easily embedded to form moldable gelatin that will facilitate the handling and low-cost commercial kits.

6.
Nanomaterials (Basel) ; 12(4)2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35215003

ABSTRACT

This work contributes to enlightening the opportunities of the anisotropic scheme of non-covalent interactions present in supramolecular materials. It provides a top-down approach based on their selective disruption that herein has been employed to process a conventional microcrystalline material to a nanofibrillar porous material. The developed bulk microcrystalline material contains uracil-1-propionic acid (UPrOH) nucleobase as a molecular recognition capable building block. Its crystal structure consists of discrete [Cu(UPrO)2 (4,4'-bipy)2 (H2 O)] (4,4'-bipy=4,4'-bipyridine) entities held together through a highly anisotropic scheme of non-covalent interactions in which strong hydrogen bonds involving coordinated water molecules provide 1D supramolecular chains interacting between them by weaker interactions. The sonication of this microcrystalline material and heating at 45 °C in acetic acid-methanol allows partial reversible solubilization/recrystallization processes that promote the cross-linking of particles into an interlocked platelet-like micro-particles metal-organic gel, but during CO2 supercritical drying, the microcrystalline particles undergo a complete morphological change towards highly anisotropic nanofibers. This unprecedented top-down microstructural conversion provides a nanofibrillar material bearing the same crystal structure but with a highly increased surface area. Its usefulness has been tested for HPLC separation purposes observing the expected nucleobase complementarity-based separation.

7.
ACS Appl Mater Interfaces ; 13(31): 36948-36957, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34338517

ABSTRACT

This work is focused on the rational structural design of two isostructural Cu(II) nano-coordination polymers (NCPs) with uracil-1-acetic acid (UAcOH) (CP1n) and 5-fluorouracil-1-acetic acid (CP2n). Suitable single crystals for X-ray diffraction studies of CP1 and CP2 were prepared under hydrothermal conditions, enabling their structural determination as 1D-CP ladder-like polymeric structures. The control of the synthetic parameters allows their processability into water colloids based on nanoplates (CP1n and CP2n). These NCPs are stable in water at physiological pHs for long periods. However, interestingly, CP1n is chemically altered in culture media. These transformations provoke the partial release of its building blocks and the formation of new species, such as [Cu(UAcO)2(H2O)4]·2H2O (Cu(II)-complex), and species corresponding to the partial reduction of the Cu(II) centers. The cytotoxic studies of CP1n versus human pancreatic adenocarcinoma and human uveal melanoma cells show that CP1n produces a decrease in the cell viability, while their UAcOH and Cu(II)-complex are not cytotoxic under similar conditions. The copper reduction species detected in the hydrolysis of CP1n are closely related to the formation of the reactive oxygen species (ROS) detected in the cytotoxic studies. These results prompted us to prepare CP2n that was designed to improve the cytotoxicity by the substitution of UAcO by 5-FUAcO, taking into account the anticancer activity of the 5-fluorouracil moiety. The new CP2n has a similar behavior to CP1n both in water and in biological media. However, its subtle structural differences are vital in improving its cytotoxic activity. Indeed, the release during the hydrolysis of species containing the 5-fluorouracil moiety provokes a remarkable increase in cellular toxicity and a significant increase in ROS species formation.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Polymers/pharmacology , Uracil/analogs & derivatives , Uracil/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Copper/chemistry , Humans , Polymers/chemical synthesis , Polymers/chemistry , Reactive Oxygen Species/metabolism , Uracil/chemical synthesis
8.
Nanomaterials (Basel) ; 11(7)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34361254

ABSTRACT

This perspective article shows new advances in the synthesis of colloids, gels, and aerogels generated by combining metal ions and ligands of biological interest, such as nucleobases, nucleotides, peptides, or amino acids, among other derivatives. The characteristic dynamism of coordination bonds between metal center and biocompatible-type ligands, together with molecular recognition capability of these ligands, are crucial to form colloids and gels. These supramolecular structures are generated by forming weak van der Waals bonds such as hydrogen bonds or π-π stacking between the aromatic rings. Most gels are made up of nano-sized fibrillar networks, although their morphologies can be tuned depending on the synthetic conditions. These new materials respond to different stimuli such as pH, stirring, pressure, temperature, the presence of solvents, among others. For these reasons, they can trap and release molecules or metal ions in a controlled way allowing their application in drug delivery as antimicrobial and self-healable materials or sensors. In addition, the correct selection of the metal ion enables to build catalytic or luminescent metal-organic gels. Even recently, the use of these colloids as 3D-dimensional printable inks has been published. The elimination of the solvent trapped in the gels allows the transformation of these into metal-organic aerogels (MOAs) and metal-organic xerogels (MOXs), increasing the number of possible applications by generating new porous materials and composites useful in adsorption, conversion, and energy storage. The examples shown in this work allow us to visualize the current interest in this new type of material and their perspectives in the short-medium term. Furthermore, these investigations show that there is still a lot of work to be done, opening the door to new and interesting applications.

9.
Sensors (Basel) ; 21(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203765

ABSTRACT

In this paper, we describe and present a Virtual Instrument, a tool that allows the determination of the electromechanical, dielectric, and elastic coefficients in polarised ferroelectric ceramic discs (piezoceramics) in the linear range, including all of the losses when the piezoceramics are vibrating in radial mode. There is no evidence in the recent scientific literature of any automatic system conceived and implemented as a Virtual Instrument based on an iterative algorithm issued as an alternative to solve the limitations of the ANSI IEEE 176 standard for the characterisation of piezoelectric coefficients of thin discs in resonant mode. The characterisation of these coefficients is needed for the design of ultrasonic sensors and generators. In 1995, two of the authors of this work, together with other authors, published an iterative procedure that allowed for the automatic determination of the complex constants for lossy piezoelectric materials in radial mode. As described in this work, the procedures involved in using a Virtual Instrument have been improved: the response time for the characterisation of a piezoelectric sample is shorter (approximately 5 s); the accuracy in measurement and, therefore, in the estimates of the coefficients has been increased; the calculation speed has been increased; an intuitive, simple, and friendly user interface has been designed, and tools have been provided for exporting and inspecting the measured and processed data. No Virtual Instrument has been found in the recent scientific literature that has improved on the iterative procedure designed in 1995. This Virtual Instrument is based on the measurement of a unique magnitude, the electrical admittance (Y = G + iB) in the frequency range of interest. After measuring the electrical admittance, estimates of the set of piezoelectric coefficients of the device are obtained. The programming language used in the construction of the Virtual Instrument is LabVIEW 2019®.

10.
ACS Appl Energy Mater ; 4(2): 1868-1875, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33644702

ABSTRACT

Tailored design of hybrid carbon nitride (CN) materials is quite challenging because of the drawbacks of the solid-state reaction, and the utilization of single crystals containing C-N monomers as reactants for the high-temperature reaction has been proven to imprint a given chemical composition, morphology, or electronic structure. We report the one-pot synthesis of alkali-containing CN macrostructures with ionic crystals on its surface by utilizing a tailored melamine-hydrochloride-based molecular single crystal containing NaCl and KCl as reactants. Structural and optical investigations reveal that upon calcination, molecular doping with Na+ and K+ is achieved, and additionally, the ionic species remain on the surface of the materials, resulting in an enhanced H2 evolution performance through water splitting owing to a high ionic strength of the reaction media. Additionally, the most stable configuration of the alkaline metals in the CN lattice is evaluated by DFT calculations. This work provides an approach for the rational design of CN and other related metal-free materials with controllable properties for energy-related applications and devices.

11.
Dalton Trans ; 50(7): 2310-2323, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33496298

ABSTRACT

This article aims to provide an overview of the studies focused on using coordination compounds as antiviral agents against different types of viruses. We present various strategies so far used to this end. This article is divided into two sections. The first collects the series of designed antiviral drugs based on coordination compounds. This approach has been developed for many years, starting from the 70s with the discovery of cis-platin (cis-DDP). It has been mainly focused on studying the synergistic effect of a wide variety of new compounds obtained by combining metal ions with organic antiviral ligands. Then, we collect various strategies analyzing the coordination compounds interacting with viruses using different processes such as wrapping viruses, rapid detection of RNA or DNA virus, or nanocarriers. These recent and novel insights help to study viruses from other points of view, allowing to measure their physical and chemical properties. We also highlight a section in which the issue of viruses from a disinfection viewpoint is addressed, using coordination compounds as a tool able to control the release of antiviral and biocide agents. This is an emerging and promising field but this approach is actually little developed. We finally provide a section with a general conclusion and perspectives.


Subject(s)
Antiviral Agents , Coordination Complexes , Metals, Heavy , Polymers , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Metals, Heavy/chemistry , Metals, Heavy/pharmacology , Polymers/chemistry , Polymers/pharmacology , Viruses/drug effects
12.
Inorg Chem ; 60(2): 1208-1219, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33378202

ABSTRACT

Two coordination polymers with formulas [CuI(dapym)]n and [Cu2I2(dapym)]n (dapym = 2,4-diaminopyrimidine) have been synthesized in water at room temperature. According to the stoichiometry used, mono (1D) and the two-dimensional (2D) structures can be obtained. Both are made up of Cu2I2 double chains. Their high insolubility in the reaction medium also makes it possible to obtain them on a nanometric scale. Their structural flexibility and short Cu-Cu distances provoke interesting optoelectronic properties and respond to physical stimuli such as pressure and temperature, making them interesting for sensor applications. The experimental and theoretical studies allow us to propose different emission mechanisms with different behaviors despite containing the same organic ligand. These behaviors are attributed to their structural differences. The emission spectra versus pressure and temperature suggest competencies between different transitions, founding critical Cu2I2 environments, i.e., symmetric in the 1D compound and asymmetric for the 2D one. The intensity in the 2D compound's emission increases with decreasing temperature, and this behavior can be rationalized with a structural constriction that decreases the Cu-Cu and Cu-I distances. However, compound 1D exhibits a contrary behavior that may be related to a change of the organic ligand's molecular configuration. These changes imply that a more significant Π-Π interaction counteracts the contraction in distances and angles when the temperature decreased. Also, the experimental conductivity measurements and theoretical calculations show a semiconductor behavior. The absorption of the 1D compound in UV, its intense emission at room temperature, and the reduction to nanometric size have allowed us to combine it homogeneously with ethyl vinyl acetate (EVA), creating a new composite material. The external quantum efficiency of this material in a Si photovoltaic mini-module has shown that this compound is an active species with application in solar cells since it can move the photons of the incident radiation (UV region) to longer wavelengths.

13.
Chemistry ; 27(9): 2887-2907, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-32894574

ABSTRACT

This review focuses on the usefulness of coordination bonds to create 3D printable inks and shows how the union of chemistry and 3D technology contributes to new scientific advances, by allowing amorphous or polycrystalline solids to be transformed into objects with the desired shape for successful applications. The review clearly shows how there has been considerable increase in the manufacture of objects based on the combination of organic matrices and coordination compounds. These coordination compounds are usually homogeneously dispersed within the matrix, anchored onto a proper support or coating the printed object, without destroying their unique properties. Advances are so rapid that today it is already possible to 3D print objects made exclusively from coordination compounds without additives. The new printable inks are made mainly with nanoscale nonporous coordination polymers, metal-organic gels, or metal-organic frameworks. The highly dynamic coordination bond allows the creation of objects, which respond to stimuli, that can act as sensors and be used for drug delivery. In addition, the combination of metal-organic frameworks with 3D printing allows the adsorption or selective capacity of the object to be increased, relative to that of the original compound, which is useful in energy storage, gas separation, or water pollutant elimination. Furthermore, the presence of the metal ion can give them new properties, such as luminescence, that are useful for application in sensors or anticounterfeiting. Technological advances, the combination of various printing techniques, and the properties of coordination bonds lead to the creation of surprising, new, printable inks and objects with highly complex shapes that will close the gap between academia and industry for research into coordination compounds.

14.
Polymers (Basel) ; 12(8)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32781520

ABSTRACT

Two new d10 metal supramolecular metal-organic frameworks (SMOFs) with general formula [ML2(H2O)2]n (M = Zn, Cd) have been synthetized using the sodium salt of the anionic 1-(3,4-dimethylphenyl)-5-methyl-1H-1,2,3-triazole-4-carboxylate ligand (Na+L-). Both SMOFs have been structurally characterized by single-crystal X-ray diffraction analysis and IR spectroscopy. The compounds are isostructural and form supramolecular aggregates via hydrogen bonds with the presence of less common dihydrogen bonds. Interestingly, they show ionic conductivity and porosity. The luminescent properties have been also studied by means of the excitation and emission spectra. Periodic DFT and molecular TD-DFT calculations have been used to unravel the emergence of luminescence in the otherwise non-emitting 1-(3,4-dimethylphenyl)-5-methyl-1H-1,2,3-triazole-4-carboxylate ligand once incorporated in the SMOFs. Our results also illustrate the importance of considering the dielectric environment in the crystal when performing excited state calculations for isolated fragments to capture the correct electronic character of the low-lying states, a practice which is not commonly adopted in the community.

15.
Dalton Trans ; 49(30): 10545-10553, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32691799

ABSTRACT

Three new coordination polymers (CPs) named [Cu(6mna)]n (CP1), [CuCl(H6mna)(H2O)0.33]n (CP2), and {[(CuI)2H2dtdn].MeCN}n (CP3), (H6mna = 6-mercaptonicotinic acid, and H2dtdn = 6,6'-dithiodinicotinic acid) have been synthesized and their structures determined by single-crystal X-ray diffraction. Complexes 1 and 3 are 2D-CPs while complex 2 is a 1D-CP. The optical properties of these complexes have been evaluated in the solid state, at room temperature and at 77 K, and compared with those of the starting ligands. The electrical conductivity of CPs 1-3 has been evaluated and their thermal stabilities have been studied. CP2 shows an interesting crystal arrangement, where the connection between the ligand and the copper forms a channel-like structure characterized by an intrinsic disorder. Crystal data collected at low temperatures for this complex revealed minor structural changes in the CuCu distances and Cu-S-Cu angles along the chain, excluding phase transition. In CP1, the N and S atoms are involved in metal coordination bonds giving rise to a 2D coordination polymer. In CP3, the Cu-I bonds compose double ladder-like structures, bridged by H2dtdn ligands. The electrical conductivities of CPs 1-3 suggest their semiconductive behavior.

16.
Chempluschem ; 85(7): 1564-1579, 2020 07.
Article in English | MEDLINE | ID: mdl-32725963

ABSTRACT

In the last years, chemical research has allowed the obtainment of a large number of new sensing compounds useful in diverse interest areas related to health, environment, food, automotive, and steel industries, among others. Taking into account the interest and demand of sensors on a large scale and the urgent need to reduce the size of devices to nanometric scale, coordination compounds (CCs) -and more specifically those based on copper- have gained full acceptance. CCs present exciting characteristics such as (i) dynamic structures, (ii) ability to form an immense variety of porous structures, or (iii) easy nano processing. Besides, copper is abundant, and an essential ion in the human body with no high toxicity at reachable detectable concentrations. Just this one element copper allows us to obtain porous, non-porous, optoelectronics, and/or magnetic-sensitive compounds that can detect a highly varied range of gases in different devices at economical costs. Several studies show how the properties of this type of compounds can be improved depending on their synthesis conditions or by the technology used in the sensor fabrication.

17.
Materials (Basel) ; 13(7)2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32260151

ABSTRACT

Coupling between electrically excited electromechanical resonances of piezoelectric ceramics is undesirable for the purpose of their characterization, since the material models correspond to monomodal resonances. However, coupling takes place quite often and it is unavoidable at the shear resonance of standard in-plane poled and thickness-excited rectangular plates. The piezoelectric coefficient e15, the elastic compliance s55E and the dielectric permittivity component ε11S for a piezoelectric ceramic can be determined, including all losses, using the automatic iterative method of analysis of the complex impedance curves for the shear mode of an appropriated resonator. This is the non-standard, thickness-poled and longitudinally excited, shear plate. In this paper, the automatic iterative method is modified. The purpose is to be able to deal with the analysis of the impedance curves of the non-standard plate as the periodic phenomena of coupling and decoupling of the main shear resonance and other resonances takes place. This happens when the thickness of the plate is reduced, and its aspect ratio (width of the excitation (w)/thickness for poling (t)) is increased. In this process, the frequency of the shear resonance also increases and meets those of other plate modes periodically. We aim to obtain the best approach for the shear properties of near coupling and to reveal both their validity and the limitations of the thus-obtained information. Finally, we use a plate of a Ba0.85Ca0.15Ti0.90Zr0.10O3 eco-piezoceramic as a case study.

18.
Dalton Trans ; 49(14): 4315-4322, 2020 Apr 07.
Article in English | MEDLINE | ID: mdl-32162634

ABSTRACT

This study tries to provide new solutions to increase the efficiency of conversion of photons in solar cells, using photoluminescent Cu(i) coordination polymers (CPs) as possible alternative materials of lower cost, than those used today, based on lanthanides. The selected CP of chemical formula [Cu(NH2MeIN)I]n (NH2MeIN = methyl, 2-amino isonicotinate) absorbs in the utraviolet and emits in the visible region, being also easily nanoprocessable, by a simple and one-pot bottom-up approach. Nanofibers of this CP can be embedded in organic matrices such as ethyl vinyl acetate (EVA), forming transparent and homogenous films, with a thermal stability of up to approximately 150 °C. These new materials maintain the optical properties of the CP used as a dopant, ([Cu(NH2MeIN)I]n), with emission in yellow (570 nm) at 300 K, which is intensified when the working temperature is lowered. In addition, these materials can be prepared with varying thicknesses, from a few microns to a few hundred nanometers, depending on the deposition method used (drop casting or spin coating respectively). The study of their external quantum efficiency (EQE) found an increase in the UV range, which translates into an increase in the conversion efficiency. The optimal CP concentration is 5% by weight in order to not diminish the transparency of the composite material. The calculated cost on the possible incorporation of this material into solar cells shows a 50% decrease over the cost reported in similar studies based on the use of lanthanides.

19.
Materials (Basel) ; 12(22)2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31718042

ABSTRACT

In this paper, a new prospect using lead-free piezoelectric ceramics is presented in order to determine their behavior in piezoelectric-based road traffic energy harvesting applications. This paper will describe the low-cost and fully programmable novel test bench developed. The test bench includes a traffic simulator and acquires the electrical signals of the piezoelectric materials and the energy harvested when stress is produced by analogous mechanical stimuli to road traffic effects. This new computer-controlled laboratory instrument is able to obtain the active electrical model of the piezoelectric materials and the generalized linear equivalent electrical model of the energy storage and harvesting circuits in an accurate and automatized empirical process. The models are originals and predict the extracted maximum power. The methodology presented allows the use of only two load resistor values to empirically verify the value of the output impedance of the harvester previously determined by simulations. This parameter is unknown a priori and is very relevant for optimizing the energy harvesting process based on maximum power point algorithms. The relative error achieved between the theoretical analysis by applying the models and the practical tests with real harvesting systems is under 3%. The environmental concerns are explored, highlighting the main differences between lead-containing (lead zirconate titanate, PZT) and lead-free commercial piezoelectric ceramics in road traffic energy harvesting applications.

20.
J Inorg Biochem ; 200: 110805, 2019 11.
Article in English | MEDLINE | ID: mdl-31470343

ABSTRACT

In this work, three mono- and bidimensional coordination polymers (CPs) based on Cu(II) and Cu(I) ([Cu2(TAcO)2(C2O4)(4,4'-bpy)]·4H2O (CP1), [Cu2(UAcO)2(C2O4)(4,4'-bpy)]·2H2O (CP2) and [Cu2(TAcO)2(4,4'-bpy)] (CP3)), decorated with thymine and uracil-1-acetate (TAcO and UAcO), 4,4'-bipyridine (4,4'-bpy) and oxalate are synthetized. The supramolecular structures of the CPs are based on the formation of non-canonical hydrogen bonds established between the free moieties of nucleobases. Interestingly, the presence of Cu(II) centers provide for compound CP1, magnetism and semiconducting properties. Additionally, CP1 has been doped with iodine, increasing its electrical conductivity up to two orders of magnitude. Moreover, the size of the materials can be modulated from millimeters to the nanoscale, depending on the crystallization conditions and/or using ultrasound.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Models, Molecular , Polymers/chemistry , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...