Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Neurología (Barc., Ed. impr.) ; 34(5): 326-335, jun. 2019. graf, ilus
Article in Spanish | IBECS | ID: ibc-180849

ABSTRACT

Introducción: El ictus es una de las principales causas de mortalidad en el mundo y debido al incremento en la expectativa de vida su incidencia va en aumento; sin embargo, el desarrollo de nuevos medicamentos con utilidad clínica ha sido prácticamente nulo, por lo que hasta la fecha el tratamiento de estos pacientes es muy limitado. Desarrollo: La evidencia básica y clínica en el área señala que tras un infarto cerebral se producen una serie de cambios neuroquímicos, entre los que se encuentran: la depleción energética, la producción de radicales libres, la acumulación de calcio, la desregulación de neurotransmisores, la excitotoxicidad, y de manera tardía, la activación del sistema inmune caracterizada como inflamación. Esta respuesta del sistema inmunológico ha mostrado ser un evento central en la progresión de la patología, en el que destaca la participación de las citocinas proinflamatorias como TNF, que aumentan el daño por excitotoxicidad y por acumulación de calcio, favorecen la formación de radicales libres y en general promueven la muerte celular. Por otro lado, algunas citocinas antiinflamatorias como IL-10 e IL-4 han mostrado tener efectos neuroprotectores e incluso favorecen la recuperación de sinapsis y la neurogénesis, haciendo de la modulación de la respuesta inmunológica un área con mucho potencial terapéutico. Conclusiones: El entendimiento de las relaciones entre el sistema inmunológico y el sistema nervioso no solo nos permite entender con mayor profundidad el fenómeno del ictus, sino que también nos ofrece un nuevo arsenal de estrategias diagnósticas, pronósticas y terapéuticas que podrían mejorar la calidad de vida de las personas aquejadas por esta terrible enfermedad


Introduction: Stroke is one of the leading causes of death in the world; its incidence is increasing due to increased life expectancy. However, treatment options for these patients are limited since no clinically effective drugs have been developed to date. Development: According to clinical evidence, a number of neurochemical changes take place after stroke, including energy depletion, increased free radical synthesis, calcium accumulation, neurotransmitter imbalance, excitotoxicity, and, at a later stage, immune system activation leading to inflammation. Immune response has been shown to be a major factor in disease progression. The release of proinflammatory cytokines such as TNF increase brain damage secondary to excitotoxicity and calcium accumulation, and promote free radical synthesis and cell death through various mechanisms. On the other hand, certain anti-inflammatory cytokines, such as IL-10 and IL-4, have been shown to have a neuroprotective effect and even promote neurogenesis and synapse remodeling, which makes immune modulation a promising treatment approach. Conclusions: Understanding the relationship between the immune system and the nervous system not only deepens our knowledge of stroke but also provides new diagnostic, prognostic, and therapeutic strategies that may increase the quality of life of stroke patients


Subject(s)
Humans , Neuroimmunomodulation/physiology , Stroke/physiopathology , Neurogenesis/physiology , Neuroprotection/physiology , Adenosine Triphosphate/deficiency , Brain Edema/physiopathology , Microglia/physiology , Macrophages/physiology
2.
Neurologia (Engl Ed) ; 34(5): 326-335, 2019 Jun.
Article in English, Spanish | MEDLINE | ID: mdl-27776957

ABSTRACT

INTRODUCTION: Stroke is one of the leading causes of death in the world; its incidence is increasing due to increased life expectancy. However, treatment options for these patients are limited since no clinically effective drugs have been developed to date. DEVELOPMENT: According to clinical evidence, a number of neurochemical changes take place after stroke, including energy depletion, increased free radical synthesis, calcium accumulation, neurotransmitter imbalance, excitotoxicity, and, at a later stage, immune system activation leading to inflammation. Immune response has been shown to be a major factor in disease progression. The release of proinflammatory cytokines such as TNF increase brain damage secondary to excitotoxicity and calcium accumulation, and promote free radical synthesis and cell death through various mechanisms. On the other hand, certain anti-inflammatory cytokines, such as IL-10 and IL-4, have been shown to have a neuroprotective effect and even promote neurogenesis and synapse remodeling, which makes immune modulation a promising treatment approach. CONCLUSIONS: Understanding the relationship between the immune system and the nervous system not only deepens our knowledge of stroke but also provides new diagnostic, prognostic, and therapeutic strategies that may increase the quality of life of stroke patients.


Subject(s)
Stroke/immunology , Stroke/physiopathology , Animals , Astrocytes/physiology , Disease Progression , Humans , Inflammation , Interferon-gamma , Interleukin-10 , Macrophages/physiology , Microglia/physiology , Neurogenesis , Neuroprotective Agents , Tumor Necrosis Factor-alpha
3.
Drug Dev Res ; 78(2): 105-115, 2017 03.
Article in English | MEDLINE | ID: mdl-28345130

ABSTRACT

Preclinical Research The aim of this study was to determine the antiallodynic effect of acute administration of the ß-lactam antimicrobials, ceftriaxone (CFX) and clavulanic acid (CLAV), for the control of established pain on a model of neuropathic pain (NP). We also investigated the involvement of dopaminergic and opioidergic pathways as well as alterations in serum concentrations of TNF-α in the antiallodynic actions of these drugs. CFX, CLAV, or gabapentin (GAP), a reference drug, were administered i.p. twelve days after constriction of the sciatic nerve in rats. Mechanic and cold allodynia were evaluated for 3 h and alterations in serum concentration of TNF-α determined. Both CFX and CLAV had antiallodynic effects in response to mechanical and cold stimulation, similar to GAP. The antiallodynic effects of CFX and CLAV were blocked by haloperidol (HAL), a D2 receptor antagonist, and by naloxone (NLX), an opioid receptor antagonist. Additionally, serum TNF-α levels were attenuated following CFX and CLAV administration. These results suggest that acute administration of CFX and CLAV may represent a promising approach for treating the acute allodynia of NP, and that the mechanisms involved in these effects involve activation of dopaminergic and opioidergic pathways as well as modulation of TNF-α production. Drug Dev Res 78 : 105-115, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Ceftriaxone/administration & dosage , Clavulanic Acid/administration & dosage , Hyperalgesia/drug therapy , Tumor Necrosis Factor-alpha/blood , Animals , Ceftriaxone/pharmacology , Clavulanic Acid/pharmacology , Cold Temperature , Dopamine Antagonists/administration & dosage , Gene Expression Regulation/drug effects , Haloperidol/administration & dosage , Hyperalgesia/blood , Hyperalgesia/etiology , Injections, Intraperitoneal , Male , Naloxone/administration & dosage , Narcotic Antagonists/administration & dosage , Rats , Touch
SELECTION OF CITATIONS
SEARCH DETAIL
...