Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671706

ABSTRACT

Lignin-based polyols (LBPs) with controlled microstructure were obtained by cationic ring opening polymerization (CROP) of oxiranes in an organosolv lignin (OL) tetrahydrofuran (THF) solution. The control on the microstructure and consequently on the properties of the LBPs such as hydroxyl number, average molecular weight, melting, crystallization and decomposition temperatures, are crucial to determine the performance and application of the derived-products. The influence of key parameters, for example, molar ratio between the oxirane and the hydroxyl groups content in OLO, initial OL concentration in THF, temperature, specific flow rate and oxirane nature has been investigated. LBPs with hydroxyl numbers from 35 to 217 mg KOH/g, apparent average Mw between 5517 and 52,900 g/mol and melting temperatures from -8.4 to 18.4 °C were obtained. The CROP procedure allows obtaining of tailor-made LBPs for specific applications in a very simple way, opening the way to introduce LBPs as a solid alternative to substitute currently used fossil-based polyols.

2.
RSC Adv ; 10(32): 18728-18739, 2020 May 14.
Article in English | MEDLINE | ID: mdl-35518328

ABSTRACT

Isosorbide bis(methyl carbonate) (IBMC) is a scarcely studied green chemical with potential applications in the manufacturing of non-isocyanate polyurethanes and bisphenol A-free polycarbonates. Its synthesis by transesterification of isosorbide with dimethyl carbonate (DMC) is very negatively influenced by the presence of small amounts of acidic impurities in isosorbide when heterogeneous inorganic carbonates such as potassium and cesium carbonates are used as catalysts. In this paper it is shown that the problem can be solved by using homogeneous catalysts consisting of nitrogenated bases and superbases having a suitable dual nucleophilic-basic character and able to form a highly reactive acyl intermediate with the electrophilic reactant DMC. Cycloaliphatic secondary and tertiary amines, guanidines and amidines covering a nucleophilicity parameter (N) range between 13.58 and 20.58 in either acetonitrile or dichloromethane, and a pK a range in acetonitrile between 15.68 and 26.02 have been tested in batchwise mode. Highly active catalysts leading to hydroxyl conversions of 84-93% require a minimum N of 16 and a pK a ranging from 18.0 to 26.0. Within this pK a range, N must increase by about 0.5-0.6 units per each unit the pK a falls to keep the catalytic activity, indicating that nucleophilicity has approximately twice as much influence as basicity on the catalytic activity. One guanidine (TBD), one amidine (DBN) and three cycloaliphatic secondary amines (N-methylpyrrolidine, quinuclidine and DABCO) have been found to be excellent catalysts at 5 mol% vs. ISO. The side reaction leading to oligomer formation is not avoided, with oligomers, mainly the dimer, affording 6 wt% of the crude product independently of hydroxyl-conversion and catalyst type.

SELECTION OF CITATIONS
SEARCH DETAIL
...