Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 6318, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38491325

ABSTRACT

Environmental niche modeling (ENM) has emerged as a promising tool for identifying grass species with potential for rangeland restoration. This approach can detect suitable areas and environments where these species can be planted. In this study, we employed ENM to estimate the potential distribution range of 50 grass species of the grasslands and shrublands of northern Mexico. The outcome of the ENM served to identify grass species with potential for restoration in Mexico, especially those not commonly used for that purpose in the past. Results suggested the possibility of selecting seven grass species with the potential for revegetating degraded grasslands, nine for shrublands, and six for alkaline soils. This research provides insights into the environmental adaptations of different grass species distributed in the rangelands of northern Mexico. Ecologists, conservation planners, researchers, and range managers could use these outcomes and the maps of the potential distribution ranges as supportive information to conduct effective restoration efforts. In turn, this can assist in increasing the probability of success of future rangelands restoration programs, which are often costly in terms of financial investments and labor.


Subject(s)
Ecosystem , Poaceae , Mexico , Conservation of Natural Resources/methods , Soil
2.
Article in English | MEDLINE | ID: mdl-35206534

ABSTRACT

The use of treated wastewater (TWW) for irrigation has gained global attention since it reduces pressure on groundwater (GW) and surface water. This study aimed to evaluate the effect of TWW on agronomic, photosynthetic, stomatal, and nutritional characteristics of barley plants. The experiment with barley was established on two bands: one band was irrigated with GW and the other with TWW. The evaluation was performed 25, 40, 60, 90, and 115 days after sowing (DAS). Results showed that irrigation with TWW increased (p < 0.01) grain yield by 54.3% and forage yield by 39.4% compared to GW irrigation. In addition, it increased plant height (PH) (p = 0.013), chlorophyll concentration index (CCI) (p = 0.006), and leaf area index (LAI) (p = 0.002). TWW also produced a positive effect (p < 0.05) in all the photosynthetic efficiency parameters evaluated. Barley plants irrigated with TWW had lower stomatal density (SD) and area (SA) (p < 0.001) than plants irrigated with GW. Plants irrigated with TWW had a higher P concentration (p < 0.05) in stems and roots and K concentration in leaves than plants irrigated with GW. We concluded that the use of TWW induced important biochemical, physiological, and agronomic changes in barley plants. Hence, the use of TWW may be a sustainable alternative for barley production in arid and semi-arid regions. This study was part of a government project, which aimed to develop a new metropolitan irrigation district with TWW. This study may contribute to the sustainability of water resources and agricultural practices in northern Mexico.


Subject(s)
Groundwater , Hordeum , Agricultural Irrigation , Agriculture/methods , Desert Climate , Wastewater/analysis
3.
Article in English | MEDLINE | ID: mdl-34444278

ABSTRACT

Natural zeolites have been employed to adsorb contaminants in water. This study is aimed to evaluate the cation and anion leaching from the zeolite after the wastewater was passed through filters packed with a natural zeolite (heulandite-CaAl2Si7O18·6H2O). Eight treatments were evaluated in a 2 × 2 × 2 factorial treatment design. Factor A was the zeolite with two levels: 127 g and 80.4 g. Factor B was the nanoparticles with two levels: one bag (3.19 g) and two bags (6.39 g); and Factor C was the use of a magnet: with and without. There were two replications; hence, a total of 16 filters were employed. The water was obtained from a municipal wastewater treatment plant (MWTP). The cations (Na+, K+; Mg+2 and Ca+2) and anions (F-, Cl- and SO42-) were measured before (influent = IW) and after filtering (effluent = EW) three times. All treatments leached the cations Na+ (EW in a range of 175 to 232 ppm), K+ (EW in a range of 15.4 to 33.2 ppm), and Mg+2 (EW in a range of 7.40 to 10.8 ppm) but did not leach Ca+2. Likewise, the treatments leached the anions F- (EW in a range of 7.59 to 8.87 ppm), Cl- (EW in a range of 85.9 to 120 ppm), and SO42- (EW in a range of 139 to 146 ppm). We conclude that this natural zeolite leaches cations (except Ca+2) and anions in MWTP passed through filters. Therefore, its application in wastewater treatment should be considered for purposes such as agriculture and animal production and not for drinking water.


Subject(s)
Nanoparticles , Water Purification , Zeolites , Anions , Cations
4.
Article in English | MEDLINE | ID: mdl-29949850

ABSTRACT

Radon (222Rn) is an odorless and tasteless gas that is known to cause lung cancer. The objective of this research was to quantify the levels of exposure to radon among people living in an environment rich in uranium (U). Radon concentrations were measured for 3 days in 12 homes in Aldama, Mexico. Homeowners agreed to participate in the study; hence, the sample was non-probabilistic. Radon was measured with a portable AlphaGuard Radon Monitor (Genicron Instruments GmbH), which was placed in a bedroom of each home at a height of 0.74 m. Gas levels were registered in Becquerels (Bq m−3), with readings taken every 10 min along with readings of ambient temperature (AT), air pressure (AP), and relative humidity (RH). We found that radon gas levels in Aldama exceed the maximum permissible limits (USA: 148 Bq m−3). Levels were higher at night, and were above the maximum permissible level recommended by the International Atomic Energy Agency of the United Nations (<200 Bq m−3). Most residents in the area have family histories of lung problems, but it was difficult to establish a strong correlation between 222Rn and lung cancer. Federal, state, and municipal governments should take stronger action to reduce the effects of radon gas on communities.


Subject(s)
Air Pollutants, Radioactive/analysis , Air Pollution, Indoor/analysis , Lung Neoplasms/chemically induced , Radon/analysis , Air Pollution, Indoor/adverse effects , Humans , Mexico , Radiation Monitoring , Radon/toxicity , Risk , Uranium
5.
Article in English | MEDLINE | ID: mdl-29883370

ABSTRACT

Pollutants from pig farms in Mexico have caused problems in many surface water reservoirs. Growing concern has driven the search for low-cost wastewater treatment solutions. The objective of this research was to evaluate the potential of an in-series constructed wetland to remove nutrients from wastewater from a pig farm. The wetland system had a horizontal flow that consisted of three cells, the first a surface water wetland, the second a sedimentation cell, and the third a subsurface flow wetland. The vegetation used was Thypa sp. and Scirpus sp. A mix of soil with red volcanic rock (10⁻30 mm diameter) and yellow sand (2⁻8 mm diameter) was used as a substrate for the vegetation. The experiments were carried out in duplicate. Water samples were collected at the inflow and outflow of the cells. Two hydraulic retention times (HRT) (5 and 10 days) and three treatments were evaluated: 400, 800, and 1200 mg·L−1 of chemical oxygen demand (COD) concentration. Data was collected in situ for temperature, pH, dissolved oxygen (DO), electrical conductivity (EC), and total dissolved solids (TDS). COD, total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3⁻N), and total phosphorous (TP) were analyzed in the laboratory. The results showed that the in-series constructed wetland is a feasible system for nutrient pollutant removal, with COD removal efficiency of 76% and 80% mg·L−1 for a 5- and 10-day HRT, respectively. The removal efficiency for TKN, NH3⁻N, and TP reached about 70% with a 5-day HRT, while a removal of 85% was obtained with a 10-day HRT. The wetland reached the maximum removal efficiency with a 10-day HRT and an inflow load of 400 mg·L−1 of organic matter. The results indicate that HRT positively affects removal efficiency of COD and TDS. On the other hand, the HRT was not the determining factor for TP removal. Treatment one, with an initial COD concentration of 400 mg·L−1, had the highest removal of the assessed pollutants, allowing for the use of water for irrigation according to Mexican regulatory standards (NOM-001). The water quality resulting from treatments two and three (T2 = 800 mg·L−1 of COD and T3 = 1200 mg·L−1 of COD) did not comply with minimal requirements for irrigation water.


Subject(s)
Waste Disposal, Fluid/methods , Ammonia/analysis , Animals , Biological Oxygen Demand Analysis , Cyperaceae , Farms , Mexico , Nitrogen/analysis , Oxygen/analysis , Phosphorus/analysis , Swine , Wastewater , Water Pollutants/analysis , Water Purification/methods , Wetlands
6.
Article in English | MEDLINE | ID: mdl-28441345

ABSTRACT

The availability of good quality water resources is essential to ensure healthy crops and livestock. The objective of this study was to evaluate the level of pollution in Bustillos Lagoon in northern Mexico. Physical-chemical parameters like sodium, chloride, sulfate, electrical conductivity, nitrates, and the pesticide dichlorodiphenyltrichloroethane (DDT) were analyzed to determine the water quality available in the lagoon. Although DDT has been banned in several countries, it is still used for agricultural purposes in Mexico and its presence in this area had not been analyzed previously. Bustillos Lagoon was divided into three zones for the evaluation: (1) industrial; (2) communal lands; and (3) agricultural. The highest concentrations of sodium (2360 mg/L) and SAR (41 meq/L) reported in the industrial zone are values exceeding the United Nations Food and Agricultural Organization (FAO) irrigation water quality guidelines. DDT and its metabolites were detected in all of the 21 sites analyzed, in the agricultural zone ∑DDTs = 2804 ng/mL, this level is much higher than those reported for other water bodies in Mexico and around the world where DDT has been used heavily. The water in the communal zone is the least contaminated, but can only be recommended for irrigation of plants with high stress tolerance and not for crops.


Subject(s)
Agricultural Irrigation , DDT/analysis , Drinking Water/analysis , Pesticides/analysis , Water Pollutants, Chemical/analysis , Water Quality , Animals , DDT/metabolism , Environmental Monitoring , Livestock , Mexico
SELECTION OF CITATIONS
SEARCH DETAIL
...