Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Radiat Res ; 191(1): 67-75, 2019 01.
Article in English | MEDLINE | ID: mdl-30398394

ABSTRACT

The risk of developing radiation-induced lung cancer differs between different strains of mice, but the underlying cause of the strain differences is unknown. Strains of mice also differ in how quickly they repair radiation-induced DNA double-strand breaks (DSBs). We assayed mouse strains from the CcS/Dem recombinant congenic strain set for their efficacy in repairing DNA DSBs during protracted irradiation. We measured unrepaired γ-H2AX radiation-induced foci (RIF), which persisted after chronic 24-h gamma irradiation, as a surrogate marker for repair efficiency in bronchial epithelial cells for 17 of the CcS/Dem strains and the BALB/c founder strain. We observed a very strong correlation (R2 = 79.18%, P < 0.001) between the level of unrepaired RIF and radiogenic lung cancer incidence measured in the same strains. Interestingly, spontaneous levels of foci in nonirradiated mice also showed good correlation with lung cancer incidence when incidence data from male and female mice were combined. These results suggest that genetic differences in DNA repair capacity largely account for differing susceptibilities to radiation-induced lung cancer among CcS/Dem mouse strains, and that high levels of spontaneous DNA damage are also a relatively good marker of cancer predisposition. In a smaller pilot study, we found that the repair capacity measured in peripheral blood leucocytes also correlated well with radiogenic lung cancer susceptibility, raising the possibility that the assay could be used to detect radiogenic lung cancer susceptibility in humans.


Subject(s)
Bronchi/metabolism , Histones/metabolism , Lung Neoplasms/etiology , Lung Neoplasms/metabolism , Neoplasms, Radiation-Induced/metabolism , Animals , Bronchi/cytology , DNA Breaks, Double-Stranded , Epithelial Cells/metabolism , Female , Genetic Predisposition to Disease , Lung Neoplasms/genetics , Male , Mice , Mice, Inbred BALB C
2.
J Parasitol ; 88(3): 600-4, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12099434

ABSTRACT

Tubulin ligands known to be toxic to certain organisms or cells were tested for their ability to inhibit proliferation of trypanosomes in culture. Tubulin was purified from Trypanosoma brucei brucei or rat brain by poly-L-lysine affinity chromatography and used in binding studies in order to compare the binding of [3H]mebendazole to trypanosome and mammalian tubulin. All the compounds tested in culture inhibited trypanosome proliferation in a concentration-dependent manner. The concentration required to inhibit trypanosome proliferation by 50 or 90% (IC50 or IC90) in 24 hr was determined for each compound. There were no significant differences (P > 0.05) among the benzimidazoles (BZs), but colchicine and vinblastine caused significantly greater inhibitions than the BZs (P < 0.02 and P < 0.005, respectively). Increasing the incubation time to 72 hr caused a 2- to 4-fold lowering of the IC50 and IC90 values for all the drugs. In the binding assays, there was higher total binding of [3H]mebendazole to trypanosome than rat brain tubulin. The results suggest that the inhibition of trypanosome growth was caused by the specific interaction of these ligands with trypanosome tubulin. Trypanosome tubulin is, therefore, a reasonable target against which novel drugs can be developed to control trypanosomiasis.


Subject(s)
Benzimidazoles/pharmacology , Colchicine/pharmacology , Trypanosoma brucei brucei/metabolism , Trypanosomiasis, African/metabolism , Tubulin/metabolism , Vinblastine/pharmacology , Animals , Benzimidazoles/metabolism , Blotting, Western , Colchicine/metabolism , Inhibitory Concentration 50 , Ligands , Rats , Substrate Specificity , Trypanosoma brucei brucei/growth & development , Trypanosomiasis, African/drug therapy , Vinblastine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...