Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Genome Biol ; 19(1): 181, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30382931

ABSTRACT

BACKGROUND: Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown. RESULTS: We show that the oomycetes Phytophthora infestans and Phytophthora sojae possess functional adenine N6-methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine could not be detected in these species. Methylated DNA IP sequencing (MeDIP-seq) of each species reveals 6mA is depleted around the transcription start sites (TSSs) and is associated with lowly expressed genes, particularly transposable elements. Genes occupying the gene-sparse regions have higher levels of 6mA in both genomes, possibly implicating the methylome in adaptive evolution. All six putative adenine methyltransferases from P. infestans and P. sojae, except PsDAMT2, display robust enzymatic activities. Surprisingly, single knockouts in P. sojae significantly reduce in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the psdamt3 mutant reveals uneven 6mA methylation reduction across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Furthermore, transposable elements such as DNA elements are more active in the psdamt3 mutant. A large number of genes, particularly those from the adaptive genomic compartment, are differentially expressed. CONCLUSIONS: Our findings provide evidence that 6mA modification is potentially an epigenetic mark in Phytophthora genomes, and complex patterns of 6mA methylation may be associated with adaptive evolution in these important plant pathogens.


Subject(s)
DNA Methylation , Gene Expression Regulation , Genome , Glycine max/parasitology , Methyltransferases/metabolism , Phytophthora/genetics , Genomics , Phylogeny , Phytophthora/classification , Phytophthora/enzymology , Virulence
2.
Phytopathology ; 108(12): 1373-1385, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29927356

ABSTRACT

To develop an effective biological agent to control Sclerotinia sclerotiorum, three endophytic Bacillus spp. strains with high antagonistic activity were isolated from maize seed and characterized. In vitro assays revealed that the Bacillus endophytes could produce volatile organic compounds (VOC) that reduced sclerotial production and inhibited mycelial growth of S. sclerotiorum. Gas chromatography-mass spectrometry revealed that the selected strains produced 16 detectable VOC. Eight of the produced VOC exhibited negative effects on S. sclerotiorum, while a further four induced accumulation of reactive oxygen species in mycelial cells. A mixture of VOC produced by Bacillus velezensis VM11 caused morphological changes in the ultrastructure and organelle membranes of S. sclerotiorum mycelial cells. The bromophenol blue assay revealed a yellow color of untreated fungal mycelium, which grew faster and deeper from 24 to 72 h postinoculation, as an indication of reduced pH. The potassium permanganate (KMnO4) titration assay showed that the rate of oxalic acid accumulation was higher in minimal salt liquid medium cultures inoculated with untreated fungal plugs compared with the Bacillus VOC-treated ones. Interestingly, biological control assays using host-plant leaves challenged with treated fungal mycelial plugs produced reduced lesions compared with the control. These findings provide new viable possibilities of controlling diseases caused by S. sclerotiorum using VOC produced by Bacillus endophytes.


Subject(s)
Antibiosis , Antifungal Agents/pharmacology , Ascomycota/drug effects , Bacillus/chemistry , Plant Diseases/microbiology , Volatile Organic Compounds/pharmacology , Antifungal Agents/metabolism , Ascomycota/growth & development , Ascomycota/ultrastructure , Bacillus/genetics , Bacillus/physiology , Endophytes , Solanum lycopersicum/microbiology , Microscopy, Electron, Transmission , Mycelium/drug effects , Mycelium/growth & development , Mycelium/ultrastructure , Pest Control, Biological , Phylogeny , Glycine max/microbiology , Nicotiana/microbiology , Volatile Organic Compounds/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...